In collaboration with EDF (Electricity of France) and ENEDIS (The French National Grid), I worked on the communication protocol for Linky meters — the G3-PLC smart meters used in France.
The LOADng routing protocol — The LLN On-demand Ad hoc Distance-vector Routing Protocol – Next Generation is designed to find paths from a Linky meter to its concentrator.
It has been adopted at ITU-G9903 international standard (https://www.itu.int/rec/T-REC-G.9903), and now being deployed in 35 million smart meters in France.
As a reactive protocol, the basic operations of LOAD include generation of Route Requests (RREQs) by a router (originator) for when discovering a route to a destination, forwarding of such RREQs until they reach the destination router, generation of Route Replies (RREPs) upon receipt of a RREQ by the indicated destination, and unicast hop-by-hop forwarding of these RREPs towards the originator. If a route is detected broken, i.e., if forwarding of a data packet to the recorded next hop on the path to the destination is detected to fail, local route repair can be attempted, or a Route Error (RERR) message can be returned to the originator of that data packet.
Related publications:
2017
Clausen, Thomas; Yi, Jiazi; Herberg, Ulrich
Lightweight On-demand Ad hoc Distance-vector Routing - Next Generation (LOADng): Protocol, Extension, and Applicability Journal Article
In: Computer Networks, vol. 126, pp. 125-140, 2017, ISSN: 1389-1286.
@article{Clausen2017,
title = {Lightweight On-demand Ad hoc Distance-vector Routing - Next Generation (LOADng): Protocol, Extension, and Applicability},
author = {Thomas Clausen and Jiazi Yi and Ulrich Herberg},
url = {http://www.sciencedirect.com/science/article/pii/S1389128617302694
http://jiaziyi.com/wp-content/uploads/2017/07/1-s2.0-S1389128617302694-main-2.pdf},
doi = {http://dx.doi.org/10.1016/j.comnet.2017.06.025},
issn = {1389-1286},
year = {2017},
date = {2017-01-01},
journal = {Computer Networks},
volume = {126},
pages = {125-140},
abstract = {This paper studies the routing protocol “Lightweight On-demand Ad hoc Distance-vector Routing Protocol – Next Generation (LOADng)”, designed to enable efficient, scalable and secure routing in low power and lossy networks. As a reactive protocol, it does not maintain a routing table for all destinations in the network, but initiates a route discovery to a destination only when there is data to be sent to that destination to reduce routing overhead and memory consumption. Designed with a modular approach, LOADng can be extended with additional components for adapting the protocol to different topologies, traffic, and data-link layer characteristics. This paper studies several such additional components for extending LOADng: support for smart route requests and expanding ring search, an extension permitting maintaining collection trees, a fast rerouting extension. All those extensions are examined from the aspects of specification, interoperability with other mechanisms, security vulnerabilities, performance and applicability. A general framework is also proposed to secure the routing protocol.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2016
Clausen, Thomas; de Verdiere, Axel Colin; Yi, Jiazi; Igarashi, Yuichi; Lys, Thierry; Lavenu, Cedric; Herberg, Ulrich; Satoh, Hiroki; Niktash, Afshin; Dean, Justin
2016.
@misc{yi_loadng,
title = {ITU G.9903 Narrow-band orthogonal frequency division multiplexing power line communication transceivers for G3-PLC networks: Amendment 1 -- The Lightweight On-demand Ad hoc Distance-vector Routing Protocol - Next Generation (LOADng)},
author = {Thomas Clausen and Axel Colin de Verdiere and Jiazi Yi and Yuichi Igarashi and Thierry Lys and Cedric Lavenu and Ulrich Herberg and Hiroki Satoh and Afshin Niktash and Justin Dean},
url = {https://tools.ietf.org/html/draft-clausen-lln-loadng-15},
year = {2016},
date = {2016-07-04},
urldate = {2015-11-20},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
2015
Yi, Jiazi; Fuertes, Juan; Clausen, Thomas
Jitter Consideration for Reactive Protocols in Mobile Ad Hoc Networks (MANETs) Miscellaneous
2015.
@misc{yi_jitter,
title = {Jitter Consideration for Reactive Protocols in Mobile Ad Hoc Networks (MANETs)},
author = {Jiazi Yi and Juan Fuertes and Thomas Clausen},
url = {https://tools.ietf.org/html/draft-yi-manet-reactive-jitter-04},
year = {2015},
date = {2015-01-09},
urldate = {2015-11-20},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Yi, Jiazi; Clausen, Thomas; Herberg, Ulrich
Depth First Forwarding for Unreliable Networks: Extensions and Applications Journal Article
In: Internet of Things Journal, IEEE, vol. 2, no. 3, pp. 199–209, 2015.
@article{yi_dff_2015,
title = {Depth First Forwarding for Unreliable Networks: Extensions and Applications},
author = {Jiazi Yi and Thomas Clausen and Ulrich Herberg},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Depth-First-Forwarding-for-Unreliable-Networks-Extensions-and-Applications.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7054435},
doi = {10.1109/JIOT.2015.2409892},
year = {2015},
date = {2015-01-01},
urldate = {2015-11-20},
journal = {Internet of Things Journal, IEEE},
volume = {2},
number = {3},
pages = {199--209},
abstract = {This paper introduces extensions and applications of depth-first forwarding (DFF)-a data forwarding mechanism for use in unreliable networks such as sensor networks and Mobile Ad hoc NETworks with limited computational power and storage, low-capacity channels, device mobility, etc. Routing protocols for these networks try to balance conflicting requirements of being reactive to topology and channel variation while also being frugal in resource requirements-but when the underlying topology changes, routing protocols require time to re converge, during which data delivery failure may occur. DFF was developed to alleviate this situation: it reacts rapidly to local data delivery failures and attempts to successfully deliver data while giving a routing protocol time to recover from such a failure. An extension of DFF, denoted as DFF++, is proposed in this paper, in order to optimize the performance of DFF by way of introducing a more efficient search ordering. This paper also studies the applicability of DFF to three major routing protocols for the Internet of Things (IoT), including the Lightweight On-demand Ad hoc Distance-vector Routing Protocol-Next Generation (LOADng), the optimized link state routing protocol version 2 (OLSRv2), and the IPv6 routing protocol for low-power and lossy networks (RPL), and presents the performance of these protocols, with and without DFF, in lossy and unreliable networks.
},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2014
Yi, Jiazi; Clausen, Thomas
Collection Tree Protocol for Lightweight On-demand Ad hoc Distance- vector Routing - Next Generation (LOADng-CT) Miscellaneous
2014.
@misc{clausen_collection_tree,
title = {Collection Tree Protocol for Lightweight On-demand Ad hoc Distance- vector Routing - Next Generation (LOADng-CT)},
author = {Jiazi Yi and Thomas Clausen},
url = {https://tools.ietf.org/html/draft-yi-loadngct-02},
year = {2014},
date = {2014-07-04},
urldate = {2015-11-20},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Yi, Jiazi; Clausen, Thomas
Smart Route Request for Lightweight On-demand Ad hoc Distance-vector Routing - Next Generation Miscellaneous
2014.
@misc{yi_smartrreq_2014,
title = {Smart Route Request for Lightweight On-demand Ad hoc Distance-vector Routing - Next Generation},
author = {Jiazi Yi and Thomas Clausen},
url = {https://tools.ietf.org/html/draft-yi-loadngsmartrreq-02},
year = {2014},
date = {2014-07-04},
urldate = {2015-11-20},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Yi, Jiazi; Clausen, Thomas
Collection Tree Extension of Reactive Routing Protocol for Low-Power and Lossy Networks Journal Article
In: International Journal of Distributed Sensor Networks, vol. 2014, pp. e352421, 2014, ISSN: 1550-1329.
@article{yi_collection_2014,
title = {Collection Tree Extension of Reactive Routing Protocol for Low-Power and Lossy Networks},
author = {Jiazi Yi and Thomas Clausen},
url = {http://www.hindawi.com/journals/ijdsn/2014/352421/abs/
http://jiaziyi.com/wp-content/uploads/2016/08/Collection-Tree-Extension-of-Reactive-Routing-Protocol-for-Low-Power-and-Lossy-Networks.pdf},
doi = {10.1155/2014/352421},
issn = {1550-1329},
year = {2014},
date = {2014-03-25},
urldate = {2015-11-20},
journal = {International Journal of Distributed Sensor Networks},
volume = {2014},
pages = {e352421},
abstract = {This paper proposes an extension to reactive routing protocol, for efficient construction of a collection tree for data acquisition in sensor networks. The Lightweight On-Demand Ad hoc Distance Vector Routing Protocol-Next Generation (LOADng) is a reactive distance vector protocol which is intended for use in mobile ad hoc networks and low-power and lossy networks to build paths between source-destination pairs. In 2013, ITU-T has ratified the recommendation G.9903 Amendment 1, which includes LOADng in a specific normative annex for routing protocol in smart grids. The extension uses the mechanisms from LOADng, imposes minimal overhead and complexity, and enables a deployment to efficiently support “sensor-to-root” traffic, avoiding complications of unidirectional links in the collection tree. The protocol complexity, security, and interoperability are examined in detail. The simulation results show that the extension can effectively improve the efficiency of data acquisition in the network., This paper proposes an extension to reactive routing protocol, for efficient construction of a collection tree for data acquisition in sensor networks. The Lightweight On-Demand Ad hoc Distance Vector Routing Protocol-Next Generation (LOADng) is a reactive distance vector protocol which is intended for use in mobile ad hoc networks and low-power and lossy networks to build paths between source-destination pairs. In 2013, ITU-T has ratified the recommendation G.9903 Amendment 1, which includes LOADng in a specific normative annex for routing protocol in smart grids. The extension uses the mechanisms from LOADng, imposes minimal overhead and complexity, and enables a deployment to efficiently support “sensor-to-root” traffic, avoiding complications of unidirectional links in the collection tree. The protocol complexity, security, and interoperability are examined in detail. The simulation results show that the extension can effectively improve the efficiency of data acquisition in the network.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Yi, Jiazi; Clausen, Thomas; Herberg, Ulrich
Depth First Forwarding for Low Power and Lossy Networks: Application and Extension Proceedings Article
In: Proceedings of IEEE World Forum on Internet of Things WF-IoT 2014, 2014.
@inproceedings{LIX-NET-conference-153,
title = {Depth First Forwarding for Low Power and Lossy Networks: Application and Extension},
author = {Jiazi Yi and Thomas Clausen and Ulrich Herberg},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Depth-First-Forwarding-for-Low-Power-and-Lossy-Networks-Application-and-Extension.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6803211},
doi = {10.1109/WF-IoT.2014.6803211},
year = {2014},
date = {2014-03-01},
publisher = {Proceedings of IEEE World Forum on Internet of Things WF-IoT 2014},
abstract = {Data delivery across a multi-hop low-power and lossy networks (LLNs) is a challenging task: devices participating in such a network have strictly limited computational power and storage, and the communication channels are of low capacity, time-varying and with high loss rates. Consequently, routing protocols finding paths through such a network must be frugal in their control traffic and state requirements, as well as in algorithmic complexity – and even once paths have been found, these may be usable only intermittently, or for a very short time due to changes on the channel. Routing protocols exist for such networks, balancing reactivity to topology and channel variation with frugality in resource requirements. Complementary compo- nent to routing protocols for such LLNs exist, intended not to manage global topology, but to react rapidly to local data delivery failures and (attempt to) successfully deliver data while giving a routing protocol time to recover globally from such a failure. Specifically, this paper studies the “Depth-First Forwarding (DFF) in Unreliable Networks” protocol, standardised within the IETF in June 2013. Moreover, this paper proposes optimisations to that protocol, denoted DFF++, for improved performance and reactivity whilst remaining fully interoperable with DFF as standardised, and incurring neither additional data sets nor protocol signals to be generated.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Clausen, Thomas; Yi, Jiazi
Path Accumulation Extensions for the LOADng Routing Protocol in Sensor Networks Proceedings Article
In: Hsu, RobertC. -H.; Wang, Shangguang (Ed.): Internet of Vehicles – Technologies and Services, pp. 150-159, Springer International Publishing, 2014, ISBN: 978-3-319-11166-7.
@inproceedings{Clausen2014,
title = {Path Accumulation Extensions for the LOADng Routing Protocol in Sensor Networks},
author = {Thomas Clausen and Jiazi Yi},
editor = {RobertC.-H. Hsu and Shangguang Wang},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Path-Accumulation-Extensions-for-the-LOADng-Routing-Protocol-in-Sensor-Networks.pdf
http://link.springer.com/chapter/10.1007%2F978-3-319-11167-4_15},
doi = {10.1007/978-3-319-11167-4_15},
isbn = {978-3-319-11166-7},
year = {2014},
date = {2014-01-01},
booktitle = {Internet of Vehicles – Technologies and Services},
volume = {8662},
pages = {150-159},
publisher = {Springer International Publishing},
series = {Lecture Notes in Computer Science},
abstract = {The “Light-weight On-demand Ad-hoc Distance-vector Routing Protocol – Next Generation” (LOADng) is a simple, yet efficient and flexible routing protocol, specifically designed for use in lossy networks with constrained devices. A reactive protocol, LOADng – as a basic mode of operation – offers discovery and maintenance of hop-by-hop routes and imposes a state in intermediate routers proportional to the number of traffic paths served by that intermediate router. This paper offers an extension to LOADng, denoted LOADng-PA (Path Accumulation). LOADng-PA is designed with the motivation of requiring even less state in each intermediate router, and with that state being independent on the number of concurrent traffic flows carried. Another motivation the design of LOADng-PA is one of monitoring and managing networks: providing more detailed topological visibility of traffic paths through the network, for either traffic or network engineering purposes.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
2013
Clausen, Thomas; Yi, Jiazi; Bas, Antonin; Herberg, Ulrich
A Depth First Forwarding (DFF) Extension for the LOADng Routing Protocol Proceedings Article
In: ASON 2013 Sixth International Workshop on Autonomous Self-Organizing Networks, 2013.
@inproceedings{Clausen2013,
title = {A Depth First Forwarding (DFF) Extension for the LOADng Routing Protocol},
author = {Thomas Clausen and Jiazi Yi and Antonin Bas and Ulrich Herberg},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/A-Depth-First-Forwarding-DFF-Extension-for-the-LOADng-Routing-Protocol.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6726934},
doi = {10.1109/CANDAR.2013.72},
year = {2013},
date = {2013-12-01},
publisher = {ASON 2013 Sixth International Workshop on Autonomous Self-Organizing Networks},
abstract = {This paper explores the cooperation between the new standards for “Low Power and Lossy Networks” (LLNs): IETF RFC 6971, denoted “Depth-First Forwarding in Unreliable Networks” (DFF) and the ITU-T standardised routing protocol “LOADng” (Lightweight On-demand ad hoc Distance-vector Routing - next generation). DFF is a data-forwarding mechanism for increasing reliability of data delivery in networks with dynamic topology and lossy links, using a mechanism similar to a “depth-first search” for the destination of a packet. LOADng is a reactive on-demand routing protocol used in LLNs. The purpose of this study is to evaluate the benefit of using DFF conjointly with a routing protocol. To this end, the paper compares the performance of LOADng and LOADng+DFF using Ns2 simulations, showing a 20% end-to-end data delivery ratio increase at expense of expected longer path lengths.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Yi, Jiazi; Clausen, Thomas; Igarashi, Yuichi
Evaluation of Routing Protocol for Low Power and Lossy Networks: LOADng and RPL Proceedings Article
In: 2013 IEEE Conference on Wireless Sensors, 2013.
@inproceedings{Clausen2013a,
title = {Evaluation of Routing Protocol for Low Power and Lossy Networks: LOADng and RPL},
author = {Jiazi Yi and Thomas Clausen and Yuichi Igarashi},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Evaluation-of-Routing-Protocol-for-Low-Power-and-Lossy-Networks-LOADng-and-RPL.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6728773},
doi = {10.1109/ICWISE.2013.6728773},
year = {2013},
date = {2013-12-01},
publisher = {2013 IEEE Conference on Wireless Sensors},
abstract = {Routing protocol is a critical component of Low- power and Lossy Networks for Smart Grid. The protocols are used for data forwarding, which includes data acquisition, information dissemination, etc. This paper evaluates two main routing protocols used for Low-power and Lossy Networks: RPL and LOADng, to understand their strengths and limitations. Observations are provided based on analysis of specification and experimental experience, regarding the protocol’s routing overhead, traffic pattern, resource requirement, fragmentation, etc. Simulations are further launched to study the performance in different traffic patterns, which include sensor-to-sensor traffic, sensor-to-root traffic and root-to-sensor bidirectional traffic. By evaluating those protocols, the readers could have better under- standing of the protocol applicability, and choose the appropriate protocol for desired applications.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Yi, Jiazi; Cordero, Juan Antonio; Clausen, Thomas
Jitter Considerations in On-demand Route Discovery for Mobile Ad Hoc Networks Proceedings Article
In: The 16th International Conference on Network-Based Information Systems (NBiS-2013), 2013.
@inproceedings{Clausen2013g,
title = {Jitter Considerations in On-demand Route Discovery for Mobile Ad Hoc Networks},
author = {Jiazi Yi and Juan Antonio Cordero and Thomas Clausen},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Jitter-Considerations-in-On-Demand-Route-Discovery-for-Mobile-Ad-Hoc-Networks.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6685393},
doi = {10.1109/NBiS.2013.28},
year = {2013},
date = {2013-09-01},
publisher = {The 16th International Conference on Network-Based Information Systems (NBiS-2013)},
abstract = {Jittering (a small, random variation in timing of control message emission) is widely used in protocols for wireless communication, in order to avoid simultaneous packet transmis- sions over the same channel by adjacent nodes in the network. Used for both regularly scheduled packets, for event-triggered packets, and for scheduled resets in the network, jittering is a particularly important mechanism when a network event may cause multiple adjacent nodes to react concurrently. Introduced in the proactive MANET routing protocol OLSR, the “LLN On-demand Ad hoc Distance-vector Routing Protocol - Next Generation” (LOADng), a derivative of AODV, is specified so as to also use jitter for flooding Route Request (RREQ) messages during route discovery. This use of jitter in RREQ flooding is, however, not without drawbacks, which are identified and addressed in this paper within the framework of a more general study of jitter mechanisms used for route discovery in reactive routing protocols. The paper studies the behavior of route discovery when using “naive” jitter (simply, delaying RREQ retransmission by a small uniformly distributed random delay), in order to identify and analyze the problems hereof, mostly related to route sub-optimality and excessive control traffic overhead. A Window Jitter mechanism is then proposed to address these issues – with the performance hereof, when compared to “naive” jitter being evaluated by way of modeling, theoretical analysis and experiments. The paper shows that the use of Window Jitter improves indeed the efficiency of route discovery in AODV and overcome the drawbacks identified for “naive” jitter.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Cordero, Juan Antonio; Yi, Jiazi; Clausen, Thomas; Baccelli, Emmanuel
Enabling Multihop Communication in Spontaneous Wireless Networks Book Chapter
In: Haddadi, Hamed; Bonaventure, Olivier (Ed.): Recent Advances in Networking, Chapter 9, pp. 413-457, ACM SIGCOMM, 2013.
@inbook{Cordero2013,
title = {Enabling Multihop Communication in Spontaneous Wireless Networks},
author = {Juan Antonio Cordero and Jiazi Yi and Thomas Clausen and Emmanuel Baccelli},
editor = {Hamed Haddadi and Olivier Bonaventure},
url = {http://sigcomm.org/education/ebook/SIGCOMMeBook2013v1_chapter9.pdf},
year = {2013},
date = {2013-08-01},
booktitle = {Recent Advances in Networking},
pages = {413-457},
publisher = {ACM SIGCOMM},
chapter = {9},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
Clausen, Thomas; Camacho, Alberto; Yi, Jiazi; de Verdiere, Axel Colin; Igarashi, Yuichi; Satoh, Hiroki; Morii, Yoko; Herber, Ulrich; Lavenu, Cedric
Interoperability Report for the Lightweight On-demand Ad hoc Distance- vector Routing Protocol - Next Generation (LOADng) Miscellaneous
2013.
@misc{yi_interoperability_2014,
title = {Interoperability Report for the Lightweight On-demand Ad hoc Distance- vector Routing Protocol - Next Generation (LOADng)},
author = {Thomas Clausen and Alberto Camacho and Jiazi Yi and Axel Colin de Verdiere and Yuichi Igarashi and Hiroki Satoh and Yoko Morii and Ulrich Herber and Cedric Lavenu },
url = {https://tools.ietf.org/html/draft-lavenu-lln-loadng-interoperability-report-04},
year = {2013},
date = {2013-06-14},
urldate = {2015-11-20},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Cordero, Juan Antonio; Yi, Jiazi; Clausen, Thomas
Optimization of jitter configuration for reactive route discovery in wireless mesh networks Proceedings Article
In: 2013 11th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), , IEEE , 2013, ISBN: 978-1-61284-824-2.
@inproceedings{Clausen2013c,
title = {Optimization of jitter configuration for reactive route discovery in wireless mesh networks},
author = {Juan Antonio Cordero and Jiazi Yi and Thomas Clausen},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Optimization-of-jitter-configuration-for-reactive-route-discovery-in-wireless-mesh-networks.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6576467},
isbn = {978-1-61284-824-2},
year = {2013},
date = {2013-05-01},
booktitle = {2013 11th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), },
publisher = {IEEE },
abstract = {Jitter is a small, random variation of timing before message emission that is widely used in non-synchronized wireless communication. It is employed to avoid collisions caused by simultaneous transmissions by adjacent nodes over the same channel. In reactive (on-demand) routing protocols, such as AODV and LOADng, it is recommended to use jitter during the flooding of Route Request messages. This paper analyzes the cost of jitter mechanisms in route discovery of on-demand routing protocols, and examines the drawbacks of the standard and commonly used uniformly distributed jitter. The main studied drawback is denominated delay inversion effect. Two variations on the jitter mechanism --window jitter and adaptive jitter-- are proposed to address this effect, which take the presence and the quality of traversed links into consideration to determine the per-hop forwarding delay. These variations allow to effectively reduce the routing overhead, and increase the quality of the computed paths with respect to the standard uniform jitter mechanism. Simulations are also performed to compare the performance of different jitter settings in various network scenarios.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
2012
Yi, Jiazi; Clausen, Thomas; Bas, Antonin
Smart Route Request for On-demand Route Discovery in Constrained Environments Proceedings Article
In: 2012 IEEE International Conference on Wireless Information Technology and Systems, 2012.
@inproceedings{Clause2012f,
title = {Smart Route Request for On-demand Route Discovery in Constrained Environments},
author = {Jiazi Yi and Thomas Clausen and Antonin Bas},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Smart-Route-Request-for-on-demand-route-discovery-in-constrained-environments.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6417755},
doi = {10.1109/ICWITS.2012.6417755},
year = {2012},
date = {2012-11-01},
publisher = {2012 IEEE International Conference on Wireless Information Technology and Systems},
abstract = {A derivative of AODV , denoted LOADng, is proposed for use in very constrained environment, sacrificing a number of features from AODV for the benefit of smaller control messages and simpler processing logic. Among these sacrifices is intermediate route replies. This paper presents an alternative to intermediate router replies, denoted Smart Route Request, which provides an optimization similar to that attainable by intermediate route requests, but without imposing additional processing complexity or additional signaling. A performance study is presented, showing that the use of Smart Route Requests can effectively reduce the control traffic overhead from Route Requests, while retaining the simplicity of LOADng. LOADng with Smart Route Requests effectively reduces control traffic overhead and on-link traffic collisions, and this especially for multipoint-to-point traffic.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Bas, Antonin; Yi, Jiazi; Clausen, Thomas
Expanding Ring Search for Route Discovery in LOADng Routing Protocol Proceedings Article
In: The 1st International Workshop on Smart Technologies for Energy, Information and Communication, 2012.
@inproceedings{Bas2012,
title = {Expanding Ring Search for Route Discovery in LOADng Routing Protocol},
author = {Antonin Bas and Jiazi Yi and Thomas Clausen},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Expanding-Ring-Search-for-Route-Discovery-in-LOADng-Routing-Protocol.pdf},
year = {2012},
date = {2012-10-01},
publisher = {The 1st International Workshop on Smart Technologies for Energy, Information and Communication},
abstract = {LOADng is an on-demand routing protocol, derived from AODV, simplified for use in lossy, low-power and constrained environments, where the ability for devices to communicate is a commodity to their primary function, and where therefore not only the communications channel offers limited capacity, but also the resources available to the device’s communica- tions subsystem are limted. LOADng simplifies AODV in a number of ways, notably the route discovery process by removing intermediate/gratuitous Route Replies – sacrificing that functionality in order to attain smaller control messages and less router state and processing. Alas, this comes at an expense: in some situations, LOADng produces increased control traffic overhead (as com- pared to AODV), and more control messages transmissions means tapping into the device’s limited resources. This paper presents a simple mechanism by which to integrate Expanding Ring flooding into LOADng. The mechanism is described, and the result of simulation studies are presented, showing that both in scenarios with “point-to-point” (any-to-any) traffic and in scenarios with “multipoint-to-point” (all traffic sent to the same destination, as in a data acquisition sensor network) traffic, considerable savings in control traffic overhead can be achieved – without loss in data delivery ratios.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Yi, Jiazi; Clausen, Thomas; de Verdiere, Axel Colin
Efficient Data Acquisition in Sensor Networks:Introducing (the) LOADng Collection Tree Protocol Proceedings Article
In: IEEE WiCom 2012, The 8th IEEE International Conference on Wireless Communications, Networking and Mobile Computing., 2012.
@inproceedings{Clausen2012,
title = {Efficient Data Acquisition in Sensor Networks:Introducing (the) LOADng Collection Tree Protocol},
author = {Jiazi Yi and Thomas Clausen and Axel Colin de Verdiere},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/Efficient-Data-Acquisition-in-Sensor-Networks-Introducing-the-LOADng-Collection-Tree-Protocol.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6478508},
doi = {10.1109/WiCOM.2012.6478508},
year = {2012},
date = {2012-09-01},
publisher = {IEEE WiCom 2012, The 8th IEEE International Conference on Wireless Communications, Networking and Mobile Computing.},
abstract = {This paper proposes an extension to the “LLN On-demand Ad hoc Distance-vector Routing Protocol - Next Generation” (LOADng), for efficient construction of a collection tree for data acquisition in sensor networks. The extension uses the mechanisms from LOADng, imposes minimal overhead and complexity, and enables a deployment to efficiently support both “point-to-point” and “multipoint-to-point” traffic, avoiding complications of uni-directional links in the collection tree. This paper further compares the performance of proposed pro-tocol extension to that of basic LOADng and to the protocol RPL (“IPv6 Routing Protocol for Low power and Lossy Networks”).},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Clausen, Thomas; Yi, Jiazi; de Verdiere, Axel Colin
LOADng: Towards AODV Version 2 Proceedings Article
In: 2012 IEEE 76th Vehicular Technology Conference, 2012.
@inproceedings{Clausen2012b,
title = {LOADng: Towards AODV Version 2},
author = {Thomas Clausen and Jiazi Yi and Axel Colin de Verdiere},
url = {http://jiaziyi.com/wp-content/uploads/2016/08/LOADng-Towards-AODV-Version-2.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6399334},
doi = {10.1109/VTCFall.2012.6399334},
year = {2012},
date = {2012-09-01},
publisher = {2012 IEEE 76th Vehicular Technology Conference},
abstract = {The Ad hoc On-demand Distance-Vector routing protocol (AODV) was published in 2003 by the IETF, as ex- perimental RFC 3561. This routing protocol was one of four routing protocols, developed by the IETF for use in mobile ad hoc networks (MANETs) – with the other being DSR, TBRPF and OLSR. As operational experiences with these protocols accumulated, the IETF set forth on standardization of OLSRv2, a successor to OLSR, and DYMO – with DYMO being the intended successor to DSR and AODV. Alas, while there was traction for and standardization of OLSRv2, interest in, development, standardization, and use of DYMO in MANETs slowly withered. AODV did, however, attract interest for routing in Low-power Lossy Networks (LLNs) due to its limited state requirements. Since 2005, several proposals for simplifying and adapting AODV specifically for LLNs emerged, in 2011 and 2012 with the use of one such adaptation of AODV in the G3-PLC standard for power line communications in smart grids, and with efforts within the IETF emerging towards a single LOADng specification, as next version of AODV. This paper presents this development – from AODV, as specified in RFC3561 – to LOADng. While the basic operation remains unchanged, LOADng presents simplifications, and additional features and flexibilities are introduced. This paper studies the impact of these changes “from AODV to LOADng”, and observes that LOADng unites simplification, flexibility and performance improvements.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}