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Abstract—This paper introduces extensions and applications of
Depth-First Forwarding (DFF) — a data forwarding mechanism
for use in unreliable networks such as sensor networks and
mobile ad hoc networks with limited computational power and
storage, low-capacity channels, device mobility, etc. Routing pro-
tocols for these networks try to balance conflicting requirements
of being reactive to topology and channel variation while also
being frugal in resource requirements — but when the underlying
topology changes, routing protocols require time to re-converge,
during which data delivery failure may occur. DFF was developed
to alleviate this situation: it reacts rapidly to local data delivery
failures and attempts to successfully deliver data while giving a
routing protocol time to recover from such a failure. An extension
of DFF, denoted DFF++, is proposed in this paper, in order
to optimise the performance of DFF by way of introducing
a more efficient search ordering. This paper also studies the
applicability, of DFF to three major routing protocols for the
“Internet of Things”, including the Lightweight On-demand
Ad hoc Distance-vector Routing Protocol - Next Generation
(LOADng), the Optimized Link State Routing protocol version
2 (OLSRv2), and the IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL), and presents the performance of
these protocols, with and without DFF, in lossy and unreliable
networks.

Index Terms—depth first search, lossy network, routing pro-
tocol

I. INTRODUCTION

With the advances in micro-controller and wireless tech-
nology, the concept of “being online” is no longer exclusively
reserved for computers, but expected also for phones, vehicles,
televisions, refrigerators, utility meters, etc. “The Internet of
Things” (IoT) assumes objects in our environment to be part
of the Internet, communicating with users and with each other
— and that these objects have communication as a commodity,
rather than as their reason for existence. Communication in
“The Internet of Things” is thus abound with challenges,
subject to resource constraints, fragile and low-capacity links,
dynamic and arbitrary topologies. Routing is among these
challenges, requiring efficient protocols, able to converge
rapidly even in very large networks, while exchanging limited
control traffic and requiring limited memory and processing
power.

Routing protocol is a crucial component of “The Internet
of Things”. Various proposals exist in the literature, including
protocols designed for low-power and lossy networks, sensor
networks, MESH and Mobile Ad hoc NETworks (MANETS).
While making different design trade-offs, all are designed
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to limit the routing overhead imposed to networks as much
as possible, and to be adapted to the varying nature of the
communication media, mobility, interference, etc. However,
even once routes to a destination have been found, they might
become unusable, in a non-predictable time-varying fashion:
dynamic topology, presence of noise or interferences, low
power supply in certain devices, uni-directional links, etc.
From a routing protocol point of view, when a link failure
is detected, signalling and/or time is required to recover and
discover new, valid routes, if such are available in the network.
During this recovery phase, data packets being sent over
the broken link must either be buffered and wait for the
route recovery, or be dropped because of lack of memory
in constrained devices. Some preliminary study has been
conducted in [1], mainly focusing on low-lower and lossy
networks. Compared to the previous short conference paper,
more detailed discussion of DFF are presented in this paper.
Its applications to major routing protocols for “Internet of
Things”, including MANET routing protocol OLSR [2] and
LOADng [3], and routing protocol for Low-power and Lossy
networks RPL [4] are studied .

“Depth-First Forwarding in Unreliable Networks” (DFF) [5]
is an experimental data forwarding standard that proposes
a mechanism for rapid and localised recovery in case of
link failure. Colloquially speaking, if a device fails in its
attempt to forward a packet to its intended next-hop, then
DFF suggests a heuristics for “trying another of that devices’
neighbours”, while keeping track of (and preventing) packet
loops. While DFF can operate independently, i.e., without a
routing protocol (which amounts to simply doing a depth-first
exploration of the network), it can also be used conjointly
with a routing protocol: the routing protocol can provide an
“order of priority” of the neighbours of a device, in which
data delivery should be attempted — and DFF can also signal
to a routing protocol when data delivery to a destination
has (possibly repeatedly) failed via a neighbour but (possibly
repeatedly) succeeded via another neighbour. [6] compares
the performance of DFF with that of other data forwarding,
showing that DFF can significantly improve the reliability of
the data transmission in networks with unstable topology.



A. Background and History: A Tale of Three Protocols

Since the late 90s, the Internet Engineering Task Force
(IETF)' has embarked upon a path of developing routing
protocols for networks with increasingly more fragile and low-
capacity links, with less pre-determined connectivity proper-
ties and with increasingly constrained router resources. In *97,
by chartering the MANET (Mobile Ad hoc Networks) working
group, then subsequently in 2006 and 2008 by chartering the
6LowPAN (IPv6 over Low power WPAN) and ROLL (Routing
Over Low power and Lossy networks) working groups, and
more recently by creating the 6lo (IPv6 over Networks of
Resource-constrained Nodes), 6TiSCH (IPv6 over the Time-
slotted Channel Hopping mode of IEEE 802.15.4e), and CORE
(Constrained RESTful Environments) working groups.

1) MANET Protocol Developments: The MANET working
group converged on the development of two protocol fam-
ilies: reactive protocols, including the “Ad hoc On-Demand
Distance Vector” (AODV) protocol [7], and proactive pro-
tocols, including the Optimized Link State Routing (OLSR)
protocol [8]. A distance vector protocol, AODV operates in
an on-demand fashion, acquiring and maintaining routes only
while needed for carrying data, by way of a Route Request—
Route Reply exchange. A link state protocol, OLSR is based
on periodic control messages exchanges, and each router
proactively maintaining a routing table with entries for all
destinations in the network, which provides low delays but
constant control overhead. A sizeable body of work exists,
including [9], studying the performance of these protocols in
different scenarios, and justifying their complementarity [10].
OLSR provides low delays and predictable, constant control
overhead — at expense of requiring memory in each router
for maintaining complete network topology. AODV limits the
memory required for routing state to that for actively used
routes — at the expense of delays for the Route Request—Route
Reply exchange to take place, and control overhead dependent
on data flows.

After acquiring operational experiences, the MANET work-
ing group commenced developing successors to OLSR and
AODYV, denoted OLSRv2 and DYMO. Whereas a relatively
large and active community around OLSR thus standardised
OLSRvV2 [2], the momentum behind DYMO withered in the
MANET working group?.

2) 6LowPAN, ROLL and G3-PLC Protocol Developments:
The 6LowPAN working group was chartered for adapting
IPv6 for operation over IEEE 802.15.4, accommodating char-
acteristics of that MAC layer, and with a careful eye on
resource constrained devices (memory, CPU, energy, ...). Part
of the original charter for this working group was to develop
protocols for routing in multi-hop topologies under such
constrained conditions, and over this particular MAC. Two
initial philosophies to such routing were explored: mesh-under
and route-over. The former, mesh-under, would, as part of
an adaptation layer between 802.15.4 and IP, provide layer
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2.5 multi-hop routing, presenting an underlying mesh-routed
multi-hop topology as a single IP link. The latter, route-over,
would expose the underlying multi-hop topology to the IP
layer, whereupon IP routing would build multi-hop connectiv-
ity. Several proposals for routing were presented in 6LowPAN,
for each of these philosophies, including LOAD [11]. LOAD
was a derivative of AODYV, but adapted for layer 2-addresses
and mesh-under routing, and with some simplifications over
AODV (e.g., removal of intermediate node replies and se-
quence numbers). However, 6LowPAN was addressing other
issues regarding adapting IPv6 for IEEE 802.15.4, such as
IP packet header compression, and solving the routing issues
was suspended, delegated to a working group ROLL, created
in 2008 for this purpose. ROLL produced a routing protocol
denoted “Routing Protocol for Low-power lossy networks”
(RPL) [4] in 2011.

While LOAD [11] development was suspended by the
6LowPAN working group, pending the results from ROLL
and experiences with RPL, AODV derivatives live on: IEEE
802.11s [12] is partly based on AODYV, and the G3-PLC
standard [13], published in 2011, specifies the use of LOAD
at the MAC layer, for providing mesh-under routing for
utility (electricity) metering networks. Justifications for using
an AODV derivative in preference to RPL include that the
former better supports bi-directional data flows such as a
request/reply of a meter reading [14], as well as algorithmic
and code complexity reasons [15]. The emergence of Low-
power and Lossy Networks (LLN) thus triggered a renewed
interest in AODV-derived protocols for specific scenarios,
resulting in work within the IETF [3], [16] for the purpose
of standardisation of LOADng, incorporating the experiences
from deploying AODV - including, but not only, in LLNs.

During the winter 2012-2013, LOAD was adopted by the
G3-alliance, and integrated into the ITU standard G.9956,
ratified as a normative appendix specifying the layer 2 routing
mechanism for power-line communication for AMI networks.
LOADng was adopted by the G3-alliance in G.9903 Amend-
ment 1 [17], [18].

B. Statement of Purpose

Depth-first search (DFS) and position based routing algo-
rithms are abound in literature. In [19], a localised algorithm
that using GPS information for QoS routing decisions is
proposed. When the hop-count metric is used, the length of the
produced QoS path is close to the shortest path algorithm. In
[20], the DFS is further optimised, and integrated with power
metrics minimising total power for routing packets. OWL
(Ordered Walk with Learning protocol) [21] is a distributed
approximation of DFS with the known topology information
to reduce the search tree. These algorithms run within routing
protocols, i.e., result in routing table entries being installed,
and most do require additional information (topology, location
of source or destination) for making the routing decisions.

This paper explores extensions to and applications of depth-
first search, referred as forwarding mechanisms (DFF) in
networks for Internet of Things, such as MANETSs and sensor



networks. DFF can operate independently, or can operate
conjointly with a routing protocols. One key issue of DFF
— selecting appropriate next-hop candidates for forwarding
data packets, is especially studied and discussed. Based on
experiments and observations, an optimisation to the DFF
standard [5], denoted DFF++, is proposed. It offers a procedure
for choosing next hops based on previously forwarded packets,
and reduces unnecessary explorations of dead-end branches in
a depth-first search. The extension is of very low impact on
DFF: it does not introduce additional protocol signalling or
data sets, and remains completely interoperable with DFF as
specified in [5]. The use of DFF, and its extension, conjointly
with routing protocols such as LOADng, OLSR and RPL are
also studied.

C. Paper Outline

The remainder of this paper is organised as follows. Sec-
tion II provides a brief overview of DFF, as defined in [5],
and section III studies, by way of an example, one of the
cardinal points of the performance of DFF: the ordering of
the elements of the so-called “Candidate Next Hop List”.
Section III also identifies a set of inconveniences in a “naive”
(but, perfectly valid, according to [5]) ordering. [5] stipulates
some basic constraints on how the Candidate Next Hop List
is to be ordered, but otherwise leaves the exact approach
and order unspecified. This paper, therefore, proceeds by
proposing a simple and overhead-free optimisation to DFF,
denoted DFF++, in section IV. This optimisation remains
fully interoperable with DFF. The use of DFF conjointly
with the routing protocols LOADng, OLSRv2, and RPL, is
studied in section V, section VI, and section VII respectively,
and performance results by way of network simulations are
presented. Finally, this paper is concluded in section VIII.

II. DEPTH FIRST FORWARDING

DFF [5] is a forwarding mechanism for improving the data
delivery success ratio across unreliable multi-hop networks.
It operates solely on the forwarding plane, i.e., does not
assume any specific routing protocol to be in operation (or,
indeed, that any routing protocol is in operation) — but can, as
appropriate and as indicated in section I of this paper, interact
with a routing protocol. DFF relies on an external mechanism
providing each router with a list of its neighbours.

DFF specifies mechanisms for detecting looping data pack-
ets, encoded as flags and sequence numbers in IPv6 hop-by-
hop header options, carried in each data packet. This additional
header incurs a small, but fixed, per-data-packet overhead
of 8 octets. This paper does not discuss this signalling and
processing in further details.

In order to support the loop detection and duplicate detec-
tion, each router running DFF maintains a “Processed Set”,
which lists sequence numbers of previously received packets,
as well as a list of next hops to which the packet has been sent
successively as part of the depth-first forwarding mechanism.

Schematically, the basic operation of DFF is as follows,
when a data packet for a destination arrives at the forwarding
plane of a router:

1) The router temporarily creates an ordered Candidate
Next Hop List for that packet from among the neigh-
bours in the router’s neighbour list. The list does not
contain the neighbour from which the data packet was
received (if any).

2) The router attempts to forward the data packet to the first
neighbour in the resulting Candidate Next Hop List.

3) There are five possible outcomes from this attempt:

a) The Candidate Next Hop List is empty, in which
case the data packet is returned to the neighbour
from which it was initially received, and the pro-
cess for this router stops.

b) Delivery to that neighbour succeeds (e.g., as con-
firmed by a layer 2 acknowledgement), and that
neighbour is the destination for the data packet.
The layer 2 acknowledgement indicates successful
data packet delivery to the destination. The process
for this router stops.

c) Delivery to that neighbour fails (e.g., detected by
lack of a layer 2 acknowledgement), in which case
that neighbour is removed from the Candidate Next
Hop List, and the process resumes at step 2 above.

d) Delivery to that neighbour succeeds (e.g., as con-
firmed by a layer 2 acknowledgement), but the
data packet is returned from the neighbour as
“undeliverable”, in which case that neighbour is
removed from the Candidate Next Hop List, and
the process resumes at step 2 above, with the
resulting Candidate Next Hop List.

e) Delivery to that neighbour succeeds (e.g., as con-
firmed by a layer 2 acknowledgement), the neigh-
bour is not the destination for the data packet.
That neighbour will, now, execute this very same
procedure (create its own Candidate Next Hop List,
and execute this process starting at step 1).

The initial Candidate Next Hop List for a data packet, by
default, contains all the neighbours of a router, except for the
neighbour from which the data packet was received, but may
be smaller. Section 11 in [5] suggests several criteria to take
into account when ordering that list, including that if a routing
protocol is in operation, then the neighbour on the shortest
path (as indicated by that routing protocol) must be part of
the initial Candidate Next Hop List — and is recommended
to be first in that initial Candidate Next Hop List. Link
quality, historical information on “good and bad neighbours
as next hop” is suggested to be used for ordering remaining
neighbours.

The order of the Candidate Next Hop List has crucial
influence to the performance of the search. The average
complexity is O(N) (N is the number of nodes), linear in
the size of the network. In the worst case, the packet has
to travel all the nodes before reaching the destination. Due to



the importance of the Candidate Next Hop List, it is further
studied in the next section.

ITI. ORDERING THE CANDIDATE NEXT HOP LIST

Section II has introduced the basic operations of DFF,
indicating that a key operational parameter is the ordering of
elements in the Candidate Next Hop List for a data packet.
To elaborate on this parameter, this section will consider the
example in figure 1, where device A sends a data packet to
device D, and which arrives at B — the sole neighbour of A.

Devices not connected
to Device D

Figure 1. An example of DFF: device A sends packets to device D. The
dotted line represents a broken link.

A. Ideal Ordering and Default Ordering

The ideal ordering of the elements in the Candidate Next
Hop List for that data packet in B would list F and G
first, followed by E. The ideal list would not include C
at all. Absent topological information (maintained by some
external process), however, B would by default populate the
initial Candidate Next Hop List with all of its bi-directional
neighbours, except for A. B would not be able to determine
that E should be listed after F and G, nor that C should be
excluded from the list. This, would lead to a “blind” search for
all the DFF forwarded data packets. Indeed, in this example
constructing the Candidate Next Hop List lexicographically —
{C, E, F, G} — would lead to the worst possible search order.

B. Ordering with Unicast Routing Protocol

If a unicast routing protocol is in place, as suggested by
section 11 in [5], that routing protocol would provide B
with information that F (or G) is the next hop identified
on the shortest path to D, and therefore allow B to ensure
that the first element in the Candidate Next Hop List for a
data packet for D would be F. Unless if the routing protocol
provides multiple paths or a complete topology in each device
— unlikely, given that the application space is constrained
devices with limited memory — the remainder of the list would
have to be constructed without any additional guidance from
the routing protocol as to a specific order of elements. A
simple lexicographical order of the remaining elements, as in
the above, would result in {F, C, E, G}.

C. When Links Break

The Candidate Next Hop List order, obtained when using
a unicast routing protocol as illustrated above, is better than
without — but is still not ideal. Consider that with the Candidate
Next Hop List being {F, C, E, G}, and data packets being
successfully transmitted from A to D along the path A-B-F-D.
Now, the link between device B and F breaks — which would
be detected by B when trying to forward a data packet to F. B
would then remove F from the Candidate Next Hop List, and
forward it to the next entry — C. As C is not on any route to
device D, the packet would eventually be returned to device B,
after having traversed the network indicated in the “cloud” in
figure 1, and B would be able to remove C from the Candidate
Next Hop List for that data packet.

D. Candidate Next Hop List Per Packet

[5] specifies that the Candidate Next Hop List is constructed
per data packet. [S] also specifies that DFF may signal to
the routing protocol when delivery to a next hop, indicated
by the routing protocol, fails such that the routing protocol
can take corrective action (e.g., remove the entries from the
routing table, corresponding to the failed next hop, and initiate
recovery as specified by the routing protocol). In the example
above, if DFF signals to the routing protocol that F has failed,
and if the routing protocol then removes routing table entries
indicating F' as next hop, then for all subsequent data packets
to D (until the routing protocol recovers and establishes a new
entry in the routing table), the initial Candidate Next Hop List
will be {C, E, G} — back to the “worst case” default ordering.

IV. DFF++: THE DESTINATION FIELD EXTENSION

As introduced in section II, when data delivery of a data
packet fails, DFF removes the failed “next hop entry” from the
Candidate Next Hop List for that data packet, and forwards
the data packet to the next entry (if any) in that list. Section III
illustrated, by way of an example, that while DFF thus may
eventually succeed in delivering data packets to the intended
destination, the efficiency of that operation — the path-length
and number of forwards of a data packet — depends on the
ordering of entries in that Candidate Next Hop List. As the
Candidate Next Hop List is constructed per-packet, several
subsequent data packets to the same destination may take the
same ‘“detour” through the network (or, in the example in
figure 1, all explore the same “blind alley” in the network
by way of C) — either persistently, or, if a unicast routing
protocol is also operating in the network, until such time that
that unicast routing protocol has recovered from the failure
and provided a new entry for the destination in the routing
table.

This section proposes a simple extension to DFF, henceforth
denoted DFF++, for establishing “memory” across several
data packets for the same destination. In the interest of being
frugal with required state, this extension (i) piggy-bags off
information already maintained by DFF, and (ii) maintains
information only temporarily, for as long as DFF otherwise
maintains information pertaining to forwarded packets.



A. State

In order to support loop and duplicate detection, each
device running DFF maintains a Processed Set, which records
sequence numbers of previously received data packets as
well as a list of next hops to which each data packet has
been successively sent, as part of the depth-first forwarding
mechanism. Without going into the details of the loop and
duplicate detection mechanisms in DFF (refer to [5]), the
“Processed Set” consists of “Processed Tuples”, of the form:

(P_orig_address, P_seq number,
P_prev_hop, P_next_hop_neighbor_list,
P_time)
where:

e P_orig_address is the originator address of the re-
ceived packet;

e P_seq number is the sequence number of the received
packet;

e P_prev_hop is the address of the previous hop of the
packet;

e P_next_hop_neighbor_list is a list of addresses of
next hops to which the packet has been sent previously,
as part of the depth-first forwarding mechanism;

e P_time specifies when this tuple expires and must be
removed.

The proposed DFF++ extensions adds an element to each
such tuple, thus:
(P_orig_address, P_seq_number,

P_prev_hop, P_next_hop_neighbor_list,

P_time, P_dest_address)

where:

e P_dest_address indicates the destination address of the
received packet.

The proposed DFF++ extension also imposes an additional

constraint on P_next_hop_neighbor, which is that:

e P_next_hop_neighbor must be ordered such that the
last element (P_next_hop_neighbor_list [LAST]) of
that list contains the last neighbour to which delivery to
P_dest_address was attempted.

B. Processing

On receiving a data packet, not destined to itself, DFF++ defines
the following process for selecting an ordered Candidate Next Hop
List (CNHL), within the constraints and guidelines from section 11
in [5].

Find the (unique) Processed Tuple, where:
e P_dest_address == the destination address of the data
packet; AND
o which has the greatest P_t ime.
Using that tuple, the CHNL is constructed thus (where & indicates
list concatenation, \ indicates list exclusion, RT(address) is the next
hop on the shortest path to the destination from the routing table —
if any, and NS indicates the set of neighbours of the device):
1) CNHL = RT( P_dest_address)
2) CHNL =CHNL @ P_next_hop_neighbor_list [LAST]
3) CHNL = CHNL & {NS\ {P_prev_hop} \
P_next_hop_neighbor_list}

4) CHNL = CHNL ¢ P_next_hop_neighbor_list

Where 1) satisfies the requirement from [5] that the first element
in the CNHL is the next hop, indicated by a routing table (if
present). Items 2) and 3) capture “pick up where the most recent
data packet delivery to the same destination left off”. Specifically,
2) is the neighbour, last tried for the most recent packet to the same
destination, and which is not yet confirmed as having failed (in which
case there would be a subsequent entry in the list, except if all
neighbours had been tried and failed), 3) includes all other so far
untried (by the most recent data packet delivery for this destination)
neighbours. Finally, 4) — which is an optional step in DFF++ —
includes all previously (by the most recent data packet delivery) tried
neighbours, capturing the fact that a previous failure may have been
due to transient losses. This excludes, of course, the neighbour from
which the data packet was received.

C. Impact

Adding and using P_dest_address, as described above, allows
construction of the Candidate Next Hop List to make use of infor-
mation on previous data packet forwards to the same destination.

Returning to the example in figure 1, one of the issues raised in
section III-C, and detailed in section III-D, is alleviated:

1) The initial Candidate Next Hop List for the first data packet
arriving at B for destination D will — using the same ordering
(routing table entry first, then the the “worst-case” lexicograph-
ical order) be {F, C, E, G}.

2) Initial delivery is attempted via F (which is added to the
end of P_next_hop_neighbor_list) and fails, and
delivery via C is attempted (which is added to the end
P_next_hop_neighbor_list).

3) Delivery via C also fails (no path via C to D), and de-
livery is now attempted via E (which is added to the
end of P_next_hop_neighbor_list) — as there is
a valid path to D via E, delivery succeeds, and the
P_next_hop_neighbor[LAST] for that processing tuple now
contains E.

4) Other data packets for D, arriving at B, before the routing
protocol (if any) has recovered and provided an entry in the
routing table for D, will, using the DFF++ Candidate Next
Hop List construction rules given in section IV-B, result in a
Candidate Next Hop List of:

o If they arrive after step 3), {E, G} — thus avoiding the
“broken link” to F, as well as the “blind alley” that would
be attempting delivery via C.

o If they arrive after step 2) but before step 3), {C, E, G}
— thus avoiding the “broken link” to F, but not the “blind
alley” that would be attempting delivery via C

o If they arrive before step 2), {F, C, E, G} — thus offering
no improvement over DFF, but also no additional penalty.

Given a network with n routers, the worst case for DFF is that the
entire network needs to be traversed before reaching the destination,
which takes O(n) tries. When DFF++ is applied, it will not change
the behaviour of the packets to the destination that the router has not
forwarded before. However, if the destination is already known to the
router, DFF++ can reduce the retry time to O(1). Note that DFF++
avoids the problem of repeatedly attempting delivery to a given
destination via “blind alleys” and over “recently detected broken
links”, but does not attempt at offering “shortest paths™ — that remains
under the auspices of a routing protocol (if any) in the network.
Also, DFF++ does not affect interoperability: the extension does not
introduce any new signals or any new external behaviours, but simply
offers guidance for how to order the Candidate Next Hop List for a
data packet. The specification of DFF [5] specifically encourages an
intelligent ordering, and DFF++ does just that. As that ordering of
the Candidate Next Hop List for a data packet concerns only internal
processing of a device, DFF and DFF++ remain interoperable. DFF++



can furthermore be deployed with exactly the same (or no) unicast
routing protocols as DFF.

V. APPLICATION OF DFF TO LOADNG

This section studies the application of DFF to LOADng. An
overview of LOADng is firstly provided and followed by the inter-
action between LOADng and DFF to alleviate possible packet loss.
Simulations are then presented, studying the performance of different
protocol settings.

A. LOADng Overview

As a reactive protocol, LOADng only keeps the routing infor-
mation to desired destinations. If a data packet is to be sent to an
unknown destination, a route discovery is triggered “on-demand”.
The basic operations of LOADng [3] include generation of Route
Requests (RREQs) by a LOADng router (originator) and flooded
through the network when discovering a route to a destination,
and Route Replies (RREPs) generated by the sought destination ad
transmitted to the originator by way of unicasts. When an interme-
diate router forwards a RREQ, it installs temporary routing table
information towards the originator of the RREQs — the “reverse route”
from the destination to the originator. When the sought destination
receives a RREQ, it will respond by a unicast RREP, which is
forwarded along this installed reverse route — and the forwarding of
which will serve to install a “forward route” from the originator to
the destination. Thus, for each bidirectional path through a LOADng
router, four entries are maintained in the routing table: for directions,
an entry is recorded for the “next hop” and for the “destination” via
that “next hop”.

If a route is detected broken, i.e., if forwarding of a data packet to
the recorded next hop on the route towards the intended destination
is detected to fail, a Route Error (RERR) message is returned to the
originator of that data packet. The LOADng specification stipulates
that when the transmission of a data packet fails, that data packet is
dropped and a RERR is sent back to its source — which can, then,
trigger a new route discovery.

B. LOADng with DFF

DFF requires that a router has a list of all its neighbours available
for constructing the Candidate Next Hop List for a data packet. [5]
specifies that an external mechanism is to be in place to provide
that list, and suggests the use of NHDP (Neighborhood Discovery
Protocol) [22] — which is implemented and used for the purpose of
the performance studies in this paper.

The routing protocol LOADng provides, at most, one entry in
the routing table for each destination, thus the integration of the
requirements for ordering the entries in the Candidate Next Hop List
for a data packet is met simply by, if a routing table entry for the
destination is present, inserting this first in that list. The remainder of
the entries in the Candidate Next Hop List are, simply, all the other
neighbours discovered by NHDP (and with status SYMMETRIC),
excluding of course the neighbour from which the data packet was
received.

Additionally, the two following rules govern the application of
DFF to LOADng, for the purpose of the studies in this paper,
specifically when the protocol operations for each are activated:

« When a router receives a data packet from another router, for
which it does not have a corresponding entry in the routing
table:

— Send the data packet according to the DFF forwarding
rules, as described in section II.
— Send a RERR message to the originator of that data packet,
as described in section V-A.
A RERR message is sent since while DFF will ensure data
delivery, this may be by way of an excessively long path; by
sending a RERR message, the routing protocol is instructed

to “try to find a better path” whilst DFF concurrently attempts
delivery of data in transit (thus reducing delays, retransmissions
and/or buffer of data traffic).

o If forwarding of a data packet to the next hop, indicated by
LOADng (i.e., the first entry in the Candidate Next Hop List)
fails (either by way of the packet being returned by DFF, or by
a layer 2 acknowledgement being absent):

— Send the data packet according to the DFF forwarding
rules, as described in section II.

— Send a RERR message to the originator of that data packet,
as described in section V-A.

In this case, a RERR message is sent since, in addition to the
reasons listed above, this is indicative of the routing information
being inconsistent with the network topology, and therefore
needs to be updated.

With the example given in figure 1, the route originally found by
LOADng protocol was A-B-F-D (one of the shortest paths). However,
when a data packet arrived at node B, the link B-F was detected
broken. By using DFF, a neighbour node from the Candidate Next
Hop List, node C, for example, is chosen as next hop. The data packet
is thus forwarded to node C, which will handle the packet according
its routing table information or DFF, and forward it to the destination
node D. In the meantime, node B will send a RERR message to node
A, to notify the route failure.

C. Simulation and Analyses

1) Simulation Settings: In order to evaluate the performance
of DFF++, and compare its performance to that of DFF, network
simulations by way of NS2 are employed. While network simulations
are, at best, an approximation of real-world performance (particularly
due to the fidelity of their lower layers to reality), they do provide
a baseline for comparison and, generally, best-case results, i.e., real-
world performance is expected to be no better than that which is
obtained through simulations. The reason for using network simula-
tions is that it allows running experiments with different protocols
under identical conditions and parameters (MAC layer, distribution,
number of nodes, etc.).

Simulations were conducted using the TwoRayGround propagation
model and the IEEE 802.11 MAC. Although there are various low-
layer technologies more commonly (and, perhaps, more viably) used
for LLNs (power line communication, 802.15.4, low-power wifi,
bluetooth low energy, etc.), general behaviours of a protocol can be
inferred from simulations using 802.11.

The general network topology of a scenario is as follows: n (from
63 to 500) devices are placed randomly (while ensuring that the
network 1is still connected) in a square field, such that to maintain
a constant device density. There are n — 1 Constant Bit Rate (CBR)
streams in the network. The original node of the CBR stream (chosen
randomly) sends one packet of 512 octets every 5 seconds to a
destination (chosen randomly). As DFF is supposed to be particularly
beneficial in lossy networks the simulations enforce that a packet is
lost with a probability of 20%. Simulations were run for 100 seconds
each, and for each datapoint 20 different and randomly generated
scenarios — all corresponding to the same abstract parameters — were
simulated, with the results shown below representing averages from
among these.

2) Results and Discussions: DFF and DFF++ were evaluated
both in isolation (without a concurrently operating unicast routing
protocol), when used in conjunction with LOADng, as well as
compared with LOADng operating alone in the same networks, so
as to evaluate the benefits of DFF and DFF++, respectively. In total,
five different protocol combinations were evaluated:

o DFFonly: DFF according to RFC6971 [5], with the Neighbour-
hood Discovery Protocol (NHDP) [22] used for bi-directional
neighbour discovery.



o DFF++only: The DFF++ extension as described in section 1V,
with RFC 6971 [22].

o LOADng: LOADng, according to [3].

o LOADngDFF: LOADng with DFF ([5], [22] and [3]).

o LOADngDFF++: LOADng with DFF++ ([3] plus the process
described in section IV and with [22]).

For NHDP [22], a HELLO message interval must be chosen.
The shorter the HELLO message interval, the more accurate a list
of neighbours can be acquired (and so, the better can DFF and
DFF++ do their jobs) — but at the expense of increased control traffic
overhead. For the purpose of these simulations, a HELLO interval of
Is was (arbitrarily) chosen as it represents a “very frequent” HELLO
message exchange and therefore a good “worst case” example. In
a deployment, the HELLO interval should be selected so as to
correspond to the expected local network topology change rate.

Figure 2 depicts the packet delivery ratio of the different protocols
combination. When DFF (DFFonly and DFF++only) is running
without an external routing protocol, DFF++ offers a significant
improvement of the packet delivery ratio over DFE. The lower
performance, experienced when running without an external routing
protocol is due to depth first searching being inefficient, worst case
causing a complete transversal of the network graph for each data
packet. DFF, used with LOADng, yields about 20 percentage points
improvement of the delivery ratio, as compared to LOADng alone,
and DFF++ used with LOADng further improves the data delivery
ratio — albeit marginally so.
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Figure 2. Average data packet delivery ratio

The average end-to-end delay is depicted in Figure 3. It should
be noted, particularly for this figure, that only data packets that
successfully arrive the destination are accounted in the statistics.
DFF and DFF++ alone exhibit significantly greater delays than
when running with LOADng. Balance with the data delivery ratio
in figure 2, this is noteworthy: combining DFF/DFF++ yields lower
delays and better data delivery. LOADng alone exhibits a slightly
lower delay than when compared with DFF and DFF++ — which is
compensated by the fact that inclusion of DFF/DFF++ increases the
data delivery ratios obtained by approximately 20 percentage points.

Figure 4 depicts the average path length (of successfully delivered
packets), i.e., the number of hops required for a packet to reach its
destination. When running without an external routing protocol, the
“blind” depth-first search of DFF causes 6-7 times as long paths as
LOADng — with DFF++ offering shorter path lengths than DFF. When
combined with LOADng, both DFF and DFF++ yield significantly
shorter path lengths, as compared to DFF/DFF++ alone — and slightly
longer path-lengths than when running LOADng alone. This, again,
is explained by the fact that LOADng with DFF/DFF++ increases the
data delivery ratio.
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Figure 3. Average end-to-end delay
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Figure 5 illustrates the control packet overhead. For DFF and
DFF++ without an external routing protocol, the overhead is consti-
tuted from locally exchanged HELLO messages, generated by NHDP
to discover the bi-directional neighbours. When introducing LOADng
(either alone, or in conjunction with DFF/DFF++), the protocol
overhead of that routing protocol for route discovery (see [23] for
details) is also imposed on the network, and causes additional MAC
layer collisions.
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VI. ApPPLICATION OF DFF TO OLSR

This section studies the application of DFF to OLSRv2. An
overview of OLSRv2 is firstly provided and followed by the inter-
action between OLSRv2 and DFF to alleviate possible packet loss.
Simulations are then presented, studying the performance of different
protocol settings. Note that while the results of this section are based
on OLSRv2, expected results for OLSR(v1) are very similar due to
the same core algorithm that is used in both OLSR and OLSRv2.

A. Optimized Link State Routing version 2

OLSRV2 (version 2) [2] periodically sends routing control mes-
sages to maintain the network topology inside each router. Compared
to reactive protocol such as LOADng, OLSRvV2 provides low delays
and predictable, constant control overhead, at expense of requiring
memory in each router for maintaining the network topology.

OLSRV2 contains three basic processes: Neighbourhood Discov-
ery, MPR (Multi-Point Relay) flooding and link state advertisements,
briefly described in the below.

1) Neighbourhood Discovery: Neighbourhood discovery is the
process, whereby each router discovers the routers which are in direct
communication range of itself (1-hop neighbours), and detects with
which of these it can establish bi-directional communication. Each
router sends HELLOs, listing the identifiers of all the routers from
which it has recently received a HELLO, as well as the “status” of
the link (heard, verified bi-directional).

2) MPR Flooding: MPR flooding is the process whereby each
router is able to, efficiently, conduct network-wide broadcasts. Each
router designates, from among its bi-directional neighbours, a subset
(MPR set) such that a message transmitted by the router and relayed
by the MPR set is received by all its 2-hop neighbours. MPR selection
is encoded in outgoing HELLOs.

3) Link State Advertisement: Link state advertisement is the
process whereby routers are determining which link state information
to advertise through the network periodically. Each router must
advertise, at least, all links between itself and its MPR-selector-set, in
order to allow all routers to calculate shortest paths. Such link state
advertisements are carried in TCs, broadcast through the network
using the MPR flooding process described above.

4) Routing and Forwarding: OLSRv2 is a routing protocol,
which implies that it acquires a topology database describing the
network, and then produces a routing table — typically, handed off
the the underlying operating system for use when forwarding data.
OLSRvV2 does have the ability to use various “triggers” (for example,
if an external signal is available indicating that a local link is broken)
to use for updating the topology database, but absent such relies
on pure periodic control message exchange. Thus, assuming default
parameters for OLSRv2 control message intervals, from a link is
broken and until this has been reflected through the entire network,
around 8 seconds will elapse while the protocol converges — 8
seconds, during which IP datagrams potentially are dropped even if
an alternative forwarding path might exist in the network. Integrating
DFF with OLSR is expected to be beneficial for data delivered
during that time, improving the data delivery rate in across a network
wherein links are either lossy, rapidly changing, or both.

B. OLSRv2 with DFF

As indicated in section II, DFF relies on an external mechanism
for providing neighbourhood information. When used in conjunction
with OLSR, a neighbourhood discovery process [22] is already
in place, providing the required information for constructing the
Candidate Next Hop List. Additionally, OLSRv2 generates a routing
table, providing next hop information for each destination that the
routing protocol is aware of. The corresponding entry from this
routing table is — as recommended by [5] — if present, is used as
the first element in the Candidate Next Hop List.

The DFF and DFF++ forwarding mechanisms are applied only to
unicast data traffic, not to broad/multicast traffic such as OLSRv2
control traffic, according to the steps indicated in section II.

When a router attempts forwarding an IP datagram to a next hop,
according step 2 in section II, one of the five outcomes in step 3 can
result. If the outcome is either of step 3b, 3d, or step 3e, then the
link to that neighbour is “good” — and that information may be used
for increasing the link quality for that link, as per section 14 of [22].
Conversely, if delivery to that neighbour fails, as per step 3c, this may
be used for decreasing the link quality for that link. So increasing
and decreasing the link quality provides a signal for OLSRv2 to
determine if a given link should be admitted, or not, as part of the
usable network topology. If a IP datagram is successfully delivered to
a neighbour, which subsequently returns it as “undeliverable” (as per
step 3a), the neighbour which returned the IP datagram is definitely
not a valid next hop for the given destination. Any routing table
entry indicating that neighbour as next-hop for the destination of the
returned IP datagram is, therefore, removed.

C. Simulation and Analyses

This section describes the simulation settings and results.

1) Simulation Settings: The simulations are performed to eval-
uate the application of DFF to OLSR. The simulator and network
interface settings are identical with section V-Cl1.

Because OLSRv2 is designed for MANETS, a dynamic network
scenario is employed in the simulations. There are 50 mobile routers
running OLSRv2, moving with different velocities (0 — 10 meters per
second) in a 1000m x 1000m square. 50 CBR concurrent streams
exist in the network, sending one packet of 512 octets every 5
seconds to a random destination. As the network is dynamic, the
link breakages and routing failure would depend on the speed of the
routers: the faster the routers move, the more routing failures will
occur in the network.

2) Results and Discussions: DFF and DFF++ are applied to
OLSRv2, and compared to the original OLSRv2. Three different
protocol combinations were evaluated:

e OLSRv2: the original OLSRv2 implementation based on [2].
e OLSRv2DFF: OLSRv2 with DFF.
e OLSRv2DFF++: OLSRv2 with the DFF++ extension.

The packet delivery ratio is shown in figure 6. All three settings
have similar performance in static scenarios (i.e., routers do not
move), because the network is stable and routing failure is very rare.
However, the packet loss increases significantly for OLSRv2 as the
network becomes more dynamic. The packets are dropped if the next
hop in the routing set moves out of the transmission range. DFF can
greatly improve the packet delivery ratio in such unreliable scenarios.
When the link to the next ho in the routing set is detected broken, the
packet is redirected by DFF, until it reaches the desired destination
(or is dropped if TTL = 0).

The proactive nature makes OLSRv2 suitable for use with DFF:
as the local routing set keeps the next hop information to all the
possible destinations in the network, OLSRv2 provides already the
first element in the Candidate Next Hop List for DFF. On receiving
a data packet forwarded by DFF, the router can first search its
routing set, rather than blindly in the neighbour set — which is the
case for LOADng most of the time, because LOADng discoveries
the route reactively, and thus normally does not possess the routing
information outside the originally built path. For the same reason, the
improvement brought by DFF++ is relatively moderate (but constant),
because the purpose of DFF++ is to avoid “blind searches”.

Figure 7 and figure 8 show the average end-to-end delay and
overhead respectively. Because packets forwarded by DFF tend to
travel on longer paths compared to original OLSRv2 until reaching
the destination, they would take more time and result in higher
overhead. However, it is important to mention that the delay is
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counted based on the packets that successfully reach the destinations.
Considering the significant improvement in packet delivery ratio, the
trivial cost in delay and overhead can be considered acceptable.
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VII. APPLICATION OF DFF TO RPL

In this section, the application of DFF to RPL is studied. A brief
overview of RPL is first given, followed by discussions on why RPL

is not suited for DFF.

A. RPL Overview

The basic construct in RPL is a “Destination Oriented Directed
Acyclic Graph” (DODAG), depicted in figure 9. In a converged LLN,
each RPL router has identified a stable set of parents, each of which
is a potential next-hop on a path towards the “root” of the DODAG,
as well as a preferred parent. Each router, which is part of a DODAG
(i.e. has selected parents) will emit DODAG Information Object
(DIO) messages, using link-local multicast, indicating its respective
rank in the DODAG (i.e. distance to the DODAG root according
to some metric(s), in the simplest form hop-count). Upon having
received a (number of such) DIO messages, a router will calculate
its own rank such that it is greater than the rank of each of its parents,
select a preferred parent and then itself start emitting DIO messages.

The DODAG formation thus starts at the DODAG root (initially,
the only router which is part of a DODAG), and spreads gradually
to cover the whole LLN as DIOs are received, parents and preferred
parents are selected and further routers participate in the DODAG.
The DODAG root also includes, in DIO messages, a DODAG
Configuration Object, describing common configuration attributes for
all RPL routers in that network — including their mode of operation,
timer characteristics etc. RPL routers in a DODAG include a verbatim
copy of the last received DODAG Configuration Object in their DIO
messages, permitting also such configuration parameters propagating
through the network.

Figure 9. RPL Basic Construct: DODAGs

The DODAG so constructed is used for installing upward routes:
the “preferred parent” of an RPL router can serve as a default route
towards the root, and “parents” (if exist) are also kept as backup
routes. Thus, RPL by way of DIO generation provides ‘“upward
routes” or “multipoint-to-point routes” from the sensors inside the
LLN and towards the root.

“Downward routes” are enabled by having sensors issue Destina-
tion Advertisement Object (DAO) messages, propagating as unicast
via parents towards the DODAG root. These describe which prefixes
belong to, and can be reached via, which RPL router. In a network, all
RPL routers must operate in either of storing-mode or non-storing-
mode, specified by way of a “Mode of Operation” (MOP) flag in
the DODAG Configuration Object from the root. Depending on the
MOP, DAO messages are forwarded differently towards the root:

o In non-storing-mode, an RPL router originates DAO messages,
advertising one or more of its parents, and unicast it to the
DODAG root. Once the root has received DAOs from an RPL
router, and from all routers on the path between it and the root,
it can use source routing for reaching advertised destinations
inside the LLN.

o In storing-mode, each RPL router on the path between the
originator of a DAO and the root records a route to the prefixes
advertised in the DAO, as well as the next-hop towards these
(the router, from which the DAO was received), then forwards
the DAO to its preferred parent.



“Point-to-point routes”, for communication between devices inside
the LLN and where neither of the communicating devices are
the DODAG root, are as default supported by having the source
sensor transmit via its default route to the DODAG root (i.e., using
the upward routes) which will then, depending on the “Mode of
Operation” for the DODAG, either add a source-route to the received
data for reaching the destination sensor (downward routes in non-
storing-mode) or simply use hop-by-hop routing (downward routes
in storing-mode). In the case of storing-mode, if the source and
the destination for a point-to-point communication share a common
ancestor other than the DODAG root, a downward route may be
available (and used) before reaching the DODAG root.

B. RPL with DFF?

LOADng and OLSRv2 purely operate on the “control plane”, i.e., ,
they do not alter the flow of the data traffic nor the data packet headers
or content. However, RPL requires changes to the “data plane” by
imposing different “traffic patterns” to data packets transmitted in the
network. To perform loop detection in RPL, for each packet being
forwarded, an IPv6 hop-by-hop option header is added that includes
(amongst others) the following fields [24]:

¢ SenderRank, which records the rank of router that forwards the
packets.

« Direction flag, which indicates whether the packet is to progress
upward or downward.

For upward traffic, RPL provides a local route recovery mecha-
nism: the “preferred parent” serves as default route to the root. If the
link to the preferred parent is detected broken, RPL will try to forward
the packet to other parents. However, RPL will never return the packet
back in the opposite direction of the current packet flow. This is
incompatible with DFF because DFF explicitly requires the packet
to be able to be returned to the previous hops, in order to perform the
depth-first search. An RPL implementation in storing mode could be
modified to support this behavior by basically ignoring the direction
flag and letting DFF handle forwarding and loop detection. However,
this would break interoperability with existing, standard-compliant
RPL implementations that do not use DFF. A standard-compliant
RPL implementation would simply drop a received packet that was
returned to it in case the direction flag is in the opposite direction of
the current packet flow.

For non-storing downward traffic, the packet is forwarded using
a source route constructed at the root. It is also impossible to
perform any DFF function because only the root has enough topology
information to calculate the source route. Moreover, the source route
addresses in the source route header [25] are not modified per the
RPL standard and per [25].

Therefore, as RPL imposes directions on the traffic flow and
modifies IP headers in the “data plane”, DFF cannot be applied RPL
to in any of its mode of operations without breaking interoperability.
This demonstrates one of the reasons why many routing protocols,
such as OSPEF, strictly operate on the control plane only and do not
interfere with the data plane: it may severely limit the usability of
extensions in the data plane.

VIII. CONCLUSION

DFF is a forwarding mechanism using depth-first searching for
un-reliable networks. This paper studies the application of DFF in
unreliable networks. The ordering issue of Candidate Next Hop List
is discussed in detail, based on which, a minimal-impact optimisation
to DFF, denoted DFF++ is presented. DFF++ does not impose
additional signals in-the-air, and is fully interoperable with DFF. It
alleviates some problems of DFF, such as repeatedly trying to forward
traffic down “blind alleys” and across recently detected broken links.
Performance studies comparing DFF and DFF++ alone (without a
concurrently operating unicast routing protocol) have revealed the
benefits of this optimisation to be significant: DFF++ attains a higher

data delivery rate, shorter paths and lower data delivery delays
than DFF. DFF++ attains these performance improvements without
introducing new control signals, minimal additional state (a single
IP address added to an existing data set) and low implementation
complexity — and, remains completely interoperable with DFF, as
specified in [5].

Although DFF and DFF++ can work alone by performing purely
depth-first search, neither of them attempt to offer “shortest paths” —
that remains under the auspices of a routing protocol. Both DFF
and DFF++ are intended to operate concurrently with a unicast
routing protocol. For the purpose of this study, the application of
DFF (and DFF++) to three major industrial routing protocol standards
for MANET and sensor networks: LOADng, OLSRv2 and RPL are
discussed.

DFF and DFF++ can be applied to LOADng with additional
neighbourhood discovery mechanism. Both of them can significantly
improve the delivery ratio of LOADng, especially in large scale
scenarios. DFF++ can offer a moderate, but consistently better,
performance when compared to LOADng with DFF. For OLSRv2,
because it provides already neighbourhood discovery protocol, DFF
and DFF++ can be integrated without additional control traffic. The
simulation results show that the packet delivery ratio can be greatly
improved in dynamic scenarios. The RPL protocol is also discussed.
Because of the way RPL enforces directions of data packets and
modifies IP headers in the data plane, DFF is not applicable to RPL.
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