Thesis
2011
Yi, Jiazi
Multipath routing protocol for mobile ad hoc networks PhD Thesis
University of Nantes, 2011.
@phdthesis{yi-thesis-mpolsr-2011,
title = {Multipath routing protocol for mobile ad hoc networks},
author = {Jiazi Yi},
url = {https://hal.archives-ouvertes.fr/tel-01162392/file/MP-OLSR_thesis.pdf},
year = {2011},
date = {2011-11-19},
address = {Nantes, France},
school = {University of Nantes},
abstract = { Ad hoc networks consist of a collection of wireless mobile nodes which dynamically exchange data without reliance on any fixed based station or a wired backbone network. They are by definition self-organized. The frequent topological changes make multi-hops routing a crucial issue for these networks. In this PhD thesis, we propose a multipath routing protocol named Multipath Optimized Link State Routing (MP-OLSR). It is a multipath extension of OLSR, and can be regarded as a hybrid routing scheme because it combines the proactive nature of topology sensing and reactive nature of multipath computation. The auxiliary functions as route recovery and loop detection are introduced to improve the performance of the network. The usage of queue length metric for link quality criteria is studied and the compatibility between single path and multipath routing is discussed to facilitate the deployment of the protocol. The simulations based on NS2 and Qualnet softwares are performed in different scenarios. A testbed is also set up in the campus of Polytech’Nantes. The results from the simulator and testbed reveal that MP-OLSR is particularly suitable for mobile, large and dense networks with heavy network load thanks to its ability to distribute the traffic into different paths and effective auxiliary functions. The H.264/SVC video service is applied to ad hoc networks with MP-OLSR. By exploiting the scalable characteristic of H.264/SVC, we propose to use Priority Forward Error Correction coding based on Finite Radon Transform (FRT) to improve the received video quality. An evaluation framework called SVCEval is built to simulate the SVC video transmission over different kinds of networks in Qualnet. This second study highlights the interest of multiple path routing to improve quality of experience over self-organized networks.},
keywords = {},
pubstate = {published},
tppubtype = {phdthesis}
}
Ad hoc networks consist of a collection of wireless mobile nodes which dynamically exchange data without reliance on any fixed based station or a wired backbone network. They are by definition self-organized. The frequent topological changes make multi-hops routing a crucial issue for these networks. In this PhD thesis, we propose a multipath routing protocol named Multipath Optimized Link State Routing (MP-OLSR). It is a multipath extension of OLSR, and can be regarded as a hybrid routing scheme because it combines the proactive nature of topology sensing and reactive nature of multipath computation. The auxiliary functions as route recovery and loop detection are introduced to improve the performance of the network. The usage of queue length metric for link quality criteria is studied and the compatibility between single path and multipath routing is discussed to facilitate the deployment of the protocol. The simulations based on NS2 and Qualnet softwares are performed in different scenarios. A testbed is also set up in the campus of Polytech’Nantes. The results from the simulator and testbed reveal that MP-OLSR is particularly suitable for mobile, large and dense networks with heavy network load thanks to its ability to distribute the traffic into different paths and effective auxiliary functions. The H.264/SVC video service is applied to ad hoc networks with MP-OLSR. By exploiting the scalable characteristic of H.264/SVC, we propose to use Priority Forward Error Correction coding based on Finite Radon Transform (FRT) to improve the received video quality. An evaluation framework called SVCEval is built to simulate the SVC video transmission over different kinds of networks in Qualnet. This second study highlights the interest of multiple path routing to improve quality of experience over self-organized networks.
Book Chapters
2013
Cordero, Juan Antonio; Yi, Jiazi; Clausen, Thomas; Baccelli, Emmanuel
Enabling Multihop Communication in Spontaneous Wireless Networks Book Chapter
In: Haddadi, Hamed; Bonaventure, Olivier (Ed.): Recent Advances in Networking, Chapter 9, pp. 413-457, ACM SIGCOMM, 2013.
@inbook{Cordero2013,
title = {Enabling Multihop Communication in Spontaneous Wireless Networks},
author = {Juan Antonio Cordero and Jiazi Yi and Thomas Clausen and Emmanuel Baccelli},
editor = {Hamed Haddadi and Olivier Bonaventure},
url = {http://sigcomm.org/education/ebook/SIGCOMMeBook2013v1_chapter9.pdf},
year = {2013},
date = {2013-08-01},
booktitle = {Recent Advances in Networking},
pages = {413-457},
publisher = {ACM SIGCOMM},
chapter = {9},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}