
Proceedings of ICCT2013

Performance analysis of Trickle as a flooding
mechanism

Thomas Clausen, Axel Colin de Verdiere, Jiazi Yi
Laboratoire d’Informatique (LIX) – Ecole Polytechnique, France

Thomas@ThomasClausen.org, Axel@Axelcdv.com, Jiazi@JiaziYi.com

Abstract—“The Trickle Algorithm” is conceived as an adaptive
mechanism for allowing efficient and reliable information sharing
among nodes, communicating across a lossy and shared medium.
Its basic principle is, for each node, to monitor transmissions
from its neighbours, compare what it receives with its cur-
rent state, and schedule future transmissions accordingly: if
an inconsistency of information is detected, or if few or no
neighbours have transmitted consistent information “recently”,
the next transmission is scheduled “soon” – and, in case consistent
information from a sufficient number of neighbours is received,
the next transmission is scheduled to be “later”.

Developed originally as a means of distributing firmware
updates among sensor devices, this algorithm has found use also
for distribution of routing information in the routing protocol
RPL, standardised within the IETF for maintaining a routing
topology for low-power and lossy networks (LLNs). Its use is also
proposed in a protocol for multicast in LLNs, denoted “Multicast
Forwarding Using Trickle”. This paper studies the performance
of the Trickle algorithm, as it is used in that multicast protocol.

I. INTRODUCTION

Low power and Lossy Networks (LLNs) are typically

constituted by a very large number of very small and very

cheap devices – each generally equipped with at most a few

kilobytes of RAM and around 100kB of ROM – communi-

cating through a very lossy, low-capacity wireless or wired

medium (e.g., Power Line Communication - PLC, or low-

power wireless channels, like 802.15.4 PHY). Applications of

these networks include utility metering, earthquake monitor-

ing, vehicular networks, factory and home automation, etc.

The main constraints on such networks are channel utilisa-

tion, energy consumption, and storage and processing capabil-

ities of each device. Furthermore, the lossy media and minimal

routers typically used by LLNs often lead to dynamic network

topologies. Protocols for these networks thus have to be specif-

ically designed to use as little energy as possible, minimise

channel utilisation and storage – while being as simple (both

in terms of algorithmic and implementation complexity) as

possible and be able to adapt to a changing network topology.

As an example, the unicast routing protocol, LOADng [1],

standardised as part of [2], uses a greatly simplified reactive

route discovery mechanism to discover and maintain routes

only on-demand, emphasising state reduction and implemen-

tation simplicity and eliminating rarely beneficial options [3].

LOADng necessitates dissemination of control messages

throughout the entire network, often found to be an an ex-

pensive and unreliable task in LLNs when implemented by

way of flooding. More generally, a multitude of protocols

and applications require the ability to send a message to all

devices in a network, e.g., to bring all devices into a common

state (“turn off all the light in this room”). In a constrained

and dynamic environment, maintaining a multicast tree or

multicast mesh structure in such an environment is challenging

– and scoped flooding remains a potentially cheaper alternative

in some scenarios [4].

This underlines the importance of efficient message dissem-

ination techniques, adapted for LLNs. Classic approaches for

efficient message dissemination include mechanisms such as

Multipoint Relay [5], Essential Connecting Dominating Set

(E-CDS) [6], or MPR+SP [7] – all of which do require that de-

vices in the network maintain some additional topology knowl-

edge, the acquisition of which incurs extra control message

generation and, thus, network load. Alternative, potentially

more effective, dissemination algorithms have been proposed

for LLNs, including use of “The Trickle Algorithm” [8] [9],

an efficient dissemination mechanism first designed for code

updates in wireless sensor networks. The use of this algorithm

has been proposed within the IETF [10] – denoted “Trickle

Multicast” – as a standard mechanism for efficient message

dissemination through an LLN.

This paper evaluates the performance Trickle Multicast, and

offers a comparison with classic and MPR flooding.

A. Paper Outline

The remainder of this paper is organised as follows: sec-

tion II details the operations of Trickle Multicast, and sec-

tion III outlines classic flooding and MPR Flooding, used as

baselines for evaluating the performance of Trickle Multicast.

The different mechanisms are evaluated by way of network

simulations, which are described in section IV, with the

results presented in section VI. This paper is concluded in

section VII.

II. TRICKLE MULTICAST

Trickle [8] was originally conceived a self-adapting algo-

rithm for reliable code propagation in wireless sensor net-

works. It applies a “polite gossip” policy, where each device

periodically transmits a summary of its state (say, the firmware

version) to its neighbours, but suppresses this transmission if

it has, recently, heard enough neighbours advertising the same

state. Furthermore, as the network converges to a consistent

978-1-4799-0077-0/13/$31.00 ©2013 IEEE

Proceedings of ICCT2013

situation, where all devices have the same state, the algorithm

generates fewer transmissions.

The Trickle algorithm is defined in terms of a received

transmission being “consistent” (i.e., the neighbour sending

the advertisement has “the same” information as the receiver)

or “inconsistent” (i.e., the neighbour sending the advertisement

has “different’ information than the receiver), with the exact

definitions of “consistent” and “inconsistent” being dependent

on the protocol using the Trickle algorithm. For firmware

updates, for example, a version number equality may imply

“consistent” whereas a version number inequality may imply

“inconsistent” – or, consistency may be defined as “using a

version 3.xx firmware, for any value of xx”.

Trickle defines three constants, Imin, the minimum interval

size, Imax, the maximum interval size, defined in terms of

doublings of Imin, and k, the redundancy constant. Each

device maintains two parameters: I , the size of the current

transmission interval, t, a time within the current interval, and

a counter c, the number of consistent transmission received

during this interval. A device implementing Trickle proceeds

as follows:

1) At initialization, the device chooses I randomly in

[Imin, Imax].

2) An interval start, t is chosen randomly in [I/2, I) and c
is reset to 0. The interval finishes a I . The device then

listens to incoming transmissions until time t.
3) When the device receives a transmission from one of its

neighbours, it determines if either itself or its neighbour

has more recent data than the other:

a) If the transmission represents a consistent event,

i.e., no device has new data for the other, c is

incremented.

b) Else, if the neighbour device has new data, this

device updates its data, resets I to Imin and starts

a new interval.

c) Else, if this device has data unknown to the neigh-

bour device, it directly transmits it to all of its

neighbors, without resetting the interval.

4) At time t, the device transmits a summary of its data to

all of its neighbours only if c < k. Otherwise, the device

doubles the interval size. If this new interval size would

be greater than the time specified by Imax, Trickle sets

the interval size I to be the time specified by Imax.

Trickle can be used as an optimised flooding algorithm

in LLNs, proposed in [10] and henceforth denoted “Trickle

Multicast”, for support of IPv6 multicast forwarding in LLNs.

This use of Trickle introduces a “seed” and a sequence number

for multicast messages dissemination.

“Trickle Multicast” uses a Trickle IPv6 option to carry

SeedID1 and Sequence number2 with each multicast message,

1The SeedID is an identifier of the Trickle Multicast router by which the
multicast message enters the Trickle Multicast domain; it may be different
from the source IP address if, for example, the multicast packet originates
from a device outside that domain.

2Monotonically increasing, maintained by the Trickle Multicast router
identified by the SeedID.

allowing them to be uniquely identified. Each device also

maintains sliding windows (one per known SeedID), which

ensures that each message received is processed at most once

by the device: an incoming multicast message is accepted if

and only if its sequence number is not stored in the corre-

sponding (i.e., identified by the received message’s SeedID)

sliding window, and the Sequence Number is greater than the

lower bound of that sliding window. Devices then advertise

their state, expressed through a Trickle ICMPv6 message

summarizing the recently received multicast messages, to their

neighbours through transmissions regulated by the Trickle

algorithm
“Trickle Multicast” defines a received summary message

to be “consistent” if the recently received multicast messages

identified therein are identical to those also received by the

recipient of the summary message.

III. BASELINE FLOODING MECHANISMS

As baselines for comparing Trickle Multicast, this section

briefly discusses Classic Flooding and MPR Flooding.

A. Classic Flooding
Classic flooding is the simplest form multicast message

diffusion: when receiving a multicast message, each device

will verify if it has already received a copy hereof. If yes,

the message is silently dropped, if no, the message is sent

to each of its neighbours. This implies that the only state

a router has to maintain is a buffer, retaining identifying

information for the recently flooded messages received, and

that each flooded data message must contain a message

identifier (typically, by way of a sequence number and the

address of the source of the flooded message). No explicit

control messages are generated, and the only control signalling

incurred is the message identifier. On the other hand, since

each flooded message is transmitted exactly once by each

device in the network, it is a potentially expensive operation

[11], and subject to the infamous “broadcast storm problem”

[12]. Classic Flooding is considered the absolute baseline,

against which any more complex flooding mechanisms must

provide a measurable improvement.

B. MPR Flooding
With Multipoint Relay Flooding [13], each device selects a

set of relays (its MPRs) from among its direct neighbours. A

device, X, selects its MPR Set such that a message transmitted

by X and relayed only by the members of its MPR set will

be received by all devices 2 hops away, and stipulates that

a device relays a multicast message only if received from

a device having selected it as MPR. Thus, MPR Flooding

reduces the number of redundant copies of messages sent

through the network. MPR selection requires that each device

maintains, at least, topology up to two hops away from itself,

and to this end, participating devices periodically exchange

HELLO messages. Furthermore, a greedy algorithm is applied

to determine the relay set, which yields an approximation of

an optimal connected dominating set – this set is also signalled

by each device through HELLO messages.

Proceedings of ICCT2013

IV. SIMULATION ENVIRONMENT

In order to evaluate the performance of Trickle Multicast,

network simulations by way of NS2 are employed. While

network simulations are, at best, an approximation of real-

world performance (particularly due to the fidelity of lower

layers vs. reality), they do provide a baseline for comparison

and, generally, best-case results, i.e., real-world performance

is expected to be no better than that which is obtained through

simulations. The reason for using network simulations is,

that such allow running experiments with different protocols

(in this case, Trickle Multicast, Classic Flooding and MPR

Flooding) under identical conditions and parameters (MAC

layer, distribution, number of nodes, etc.)

Simulations were conducted using the TwoRayGround prop-

agation model and the IEEE 802.11 MAC. Although there are

various low-layer technologies more commonly (and, perhaps,

more viably) used for LLNs (power line communication,

802.15.4, low-power wifi, bluetooth low energy, etc.), general

behaviour of a protocol can be inferred from simulations using

802.11.

A. Network Topology and Multicast Traffic Characteristics

The general network topology of a scenario is as follows: n
devices are placed randomly (while ensuring that the network

is still connected) in a square field of size m × m meters.

From among the n devices, x devices are randomly chosen as

concurrent multicast data sources, each generating a multicast

data packet of 15 octets every 30 seconds, and with each

multicast data source generating n− 1 multicast data packets.

These data traffic characteristics are not chosen arbitrarily,

but rather to reflect the traffic characteristics that one might

see if using Trickle Multicast for carrying the multicast portion

of the route discovery mechanism of LOADng – as alluded in

the introduction as one interesting use of an optimised flooding

mechanism in an LLN – where each of x wishes to send a

route discovery to all other devices in the network. This, in

turn, may represent a set of controllers in a network, wishing

to inquire for sensor readings from, or manipulate actuators

on, all of these devices.

B. Protocol Parameters

The protocol parameters used for all the simulations are

shown in table I. Jitter is used on multicast messages for

MPR Flooding and Classic Flooding, according to [14], so as

to reduce the risk of collisions. Trickle has an implicit jitter

mechanism, hence [14] is not used with Trickle Multicast.

C. Scenario Descriptions

Four different kinds of scenarios are studied, comparing the

three different mechanisms. For the first scenario, different sets

of Trickle parameters are considered, including those recom-

mended by [15] for AMI (Automatic Metering Infrastructure)

networks3, and reproduced in the following:

3[15] recommends parameters for Trickle when used for “flooding” RPL
control traffic – DIOs – in an “Automatic Metering Infrastructure” network.

Parameter Default value Note

Trickle Multicast parameters

Imax 2 16 x Imin

Window size 3 Size of the sliding windows

MPR Flooding parameters
HELLO interval 5s

Neighbor expiration time 25s
MPR and Classic Flooding parameters

Jitter 500ms Maximum jitter value for
broadcast transmissions

Table I
DEFAULT PROTOCOL PARAMETERS FOR SIMULATION

• Imin should be set to at least 50 times as long as it

takes to transmit a link-local multicast packet. During

the simulations, a transmission time around 1ms was

observed, thus Imin = 100ms satisfies this constraint

without being overly conservative;

• Imax should be greater than 2 hours.

• the redundancy constant should be set to at least 10.

These parameters, given in table II, are recommended for the

use of Trickle in RPL [16], and used as a point of comparison.

The scenarios studied are:

Variable Density

The performance of Trickle flooding in a given

network density depends on the parameters chosen,

in particular for k, and Imin. These simulations are

conducted using an 1000m × 1000m square, with the

number of devices varying between 32 and 250. For

the purpose of these simulations, a single multicast

data source is used (x = 1), and the scenarios are

tested with trickle parameters as given by table II.

Fixed Density

This set of simulations compares the three flooding

mechanisms in a network of fixed density of 50

devices/km2. The number of nodes varies between

15 and 500, and the field dimensions varies corre-

spondingly from 595m×595m to 3162m×3162m

For the purpose of these simulations, a single mul-

ticast data source is used (x = 1), and for Trickle

Multicast, Imin= 1s and k=2 is used.

Variable Number of Multicast Sources

This set of simulation compares the three flooding

mechanisms when subject to a variable number of

multicast sources, ranging from x = 1 to x = 30, in

a network with 125 devices distributed across a field

of 1581m×1581m. For Trickle Multicast, Imin = 1s

and k=2 is used.

Loss Resiliance

The inconsistency detection and retransmission

mechanism of the Trickle algorithm is supposed to

ensure that message losses are eliminated – i.e., that

given enough time, all devices will have consistent

state information. Thus, this set of simulations com-

pares the performance of the flooding mechanisms in

a network subject to (explicit and excessive) message

Proceedings of ICCT2013

losses: a packet is lost with a certain (independent)

probability, ranging from 0.0 to 0.7.

A single multicast data source is used (x = 1), in a

network with 125 devices distributed across a field

of 1581m×1581m. For Trickle Multicast, Imin = 1s

and k = 2 is used.

Parameter Values

Imin 200ms, 500ms, 1s, 1.5s
k 2, 6
AMI parameters (from [15])

Imin 100ms
k 10

Table II
TRICKLE PARAMETERS FOR VARIABLE DENSITY SIMULATIONS

V. PERFORMANCE METRICS

The metrics used for evaluating the performance Trickle

Multicast, and compare with that of MPR Flooding and Classic

Flooding are as follows:

Data delivery ratio

This metric measures the success rate of the differ-

ent flooding mechanism. For a given simulation, it

averages the per-source Data delivery ratio, which

itself is the average over all the multicast data packets

sent by this source of the number of devices which

have received that packet, divided by the number of

devices other than the source.

Number of multicast data packet transmissions

This metric measures the number of times a given

data packet has to be retransmitted in order for it

to reach all the devices in the network. For a given

simulation, it is computed as the total number of

multicast data packets sent.

Total number of transmissions

This metric counts the total number of packets trans-

mitted during the simulation, counted as the source.

In other words, each control or data packet sent adds

one to the result.

Network load

The Network load measures the overall load the

flooding mechanism has put on the network during

the simulation, i.e. the actual number of KB sent,

both control and data packets.

Data Delivery Delay

The Data delivery delay represents the time taken, on

average, for a multicast data packet to reach all the

devices in the network (or, in case all the devices are

not reached, all the devices that will ever receive this

packet). As such, it is computed as the average over

all the multicast data packet generation of the time

between the first transmission of the packet and the

last time a device receives that packet for the first

time (a device receiving a given data packet twice

does not increase the delivery delay).

Flooding Path Length

This metrics gives a measure of the quality (mea-

sured by the hop count) of the paths taken by the

multicast data packets from their source to each

device in the network. Hence it is the average, over

all the data packets originated during the simulation,

of the average hop count observed at every receiving

device (each packet is counted only once at each

device). Although hop count is generally considered

a poor metric for routing, it still gives an indication

regarding the efficiency of the flooding mechanism.

VI. SIMULATION RESULTS

The evaluation of Trickle Multicast, and the comparison

with MPR Flooding and Classic Flooding in each of the four

scenarios described in section IV, and with respect to the

performance metrics presented in section V is presented and

discussed below.

A. Variable density

Figures 1, 2, 3 and 4 depict the results for the Variable

Density scenarios – it is important to recall that only a single

multicast data source is present in these simulations.

For all three mechanisms, identical data delivery ratios

(approximately of 100%) were attained. Figure 1 shows that

Classic Flooding, as expected, presents the largest number of

messages sent and figure 2 that – depending on the parameters

chosen – Trickle Multicast can offer the fewest number of data

message transmissions.

Noting that in terms of media occupation and energy

consumed for transmitting and receiving it, a more appropriate

metric is the “load” of the network, which is the number of

octets (control traffic and data traffic) necessary to complete

the flooding operations. This is depicted on figure 3, where

it can be seen that the “gain” as compared with classic

flooding, in terms of fewer messages sent by Trickle Multicast,

is greatly diminished by the size of the Trickle Multicast

control messages. Note that this graph does not include the

overhead for MPR Flooding which, due to the periodic signals

for acquiring local topology, is way higher than that of both

Trickle Multicast and Classic Flooding.

It is worth noting the sensitivity of the choice of Trickle

parameters. First, as expected, the value of Imin directly

affects the data delivery delay, as depicted in figure 4 –

whereas the value of k (the redundancy constant) has very

little effect on the incurred delay. However, increasing k and

decreasing Imin negatively affects the overhead incurred. The

effect of k is very intuitive, since it represents the number of

transmissions a given “area” will do during each transmission

interval. Figure 4 also shows that Trickle Multicast consis-

tently incurs higher delivery delay, even when choosing the

best possible parameters for the scenario, from among those

tested. In particular, the value of Imin directly affects the

delay - thus forcing a tradeoff between overhead and delay

when choosing this parameter. In summary, the performance

of Trickle Multicast depends on the choice of parameters, and

Proceedings of ICCT2013

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 50 100 150 200 250 300

N
um

be
r o

f m
ul

tic
as

t d
at

a
pa

ck
et

 tr
an

sm
is

si
on

s

Number of devices

Trickle, Imin=1000ms, k=2
Trickle, Imin=500ms, k=2

Trickle, Imin=1000ms, k=6
Trickle, Imin=1500ms, k=2

Trickle, Imin=200ms, k=2
Trickle, AMI parameters

MPR flooding
Classic flooding

Figure 1. Variable Density: Number of multicast data packet transmissions

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 50 100 150 200 250 300

To
ta

l n
um

er
 o

f t
ra

ns
m

is
si

on
s

Number of devices

Trickle, Imin=1000ms, k=2
Trickle, Imin=500ms, k=2

Trickle, Imin=1000ms, k=6
Trickle, Imin=1500ms, k=2

Trickle, Imin=200ms, k=2
Trickle, AMI parameters

MPR flooding
Classic flooding

Figure 2. Variable Density: Total number of transmissions

the set of parameters recommended by [15] exhibits the worst

performance from among those tested.

B. Fixed density

Figures 5, 6, 7, and 8 depict the results for Fixed Density

scenarios. For all three mechanisms, identical data delivery

ratios (approximately of 100%) were attained.

These simulations suggest that the performance of Trickle

flooding is tightly related to the network size, noting that

even with the “best” (according to the previous set of sim-

ulations) parameters chosen for Trickle, the overall network

load remains higher than with classic flooding. This, due to

the overhead incurred by the Trickle control messages, which

is proportional to the number of devices in the network.

Figure 8 depicts the average path lengths that data packets

follow from the source to all destinations. As all mecha-

nisms attain identical data delivery rates close to 100%, path

lengths can be compared directly, concluding that “shorter is

better”. MPR Flooding yields shorter path lengths than both

Trickle Multicast Classic Flooding, confirming the observa-

tions of [17], with Trickle Multicast attaining systematically

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 100 150 200 250 300

N
et

w
or

k
Lo

ad
 (K

B
)

Number of devices

Trickle, Imin=1000ms, k=2
Trickle, Imin=500ms, k=2

Trickle, Imin=1000ms, k=6
Trickle, Imin=1500ms, k=2

Trickle, Imin=200ms, k=2
Trickle, AMI parameters

Classic flooding

Figure 3. Variable Density: Network Load (control + data, in KB).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 50 100 150 200 250 300

D
at

a
de

liv
er

y
de

la
ys

 (s
)

Number of devices

Trickle, Imin=200ms, k=2
Trickle, Imin=500ms, k=2

Trickle, Imin=1000ms, k=2
Trickle, Imin=1500ms, k=2

Trickle, AMI parameters
MPR flooding

Classic flooding

Figure 4. Variable Density: Data Delivery Delays.

 0

 5000

 10000

 15000

 20000

 25000

 50 100 150 200 250 300 350 400 450 500

N
et

w
or

k
Lo

ad
 w

ith
ou

t M
P

R
 fl

oo
di

ng
 (K

B
)

Number of devices

Trickle flooding
Trickle flooding with AMI parameters

Classic flooding

Figure 5. Fixed Density: Network Load (control + data, in KB).

Proceedings of ICCT2013

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 50 100 150 200 250 300 350 400 450 500

To
ta

l n
um

er
 o

f t
ra

ns
m

is
si

on
s

Number of devices

Trickle flooding
Trickle flooding with AMI parameters

Classic flooding

Figure 6. Fixed Density: Number of transmissions (control+data).

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300 350 400 450 500

D
at

a
D

el
iv

er
y

D
el

ay
s

(s
)

Number of devices

Trickle flooding
Trickle flooding with AMI parameters

Classic flooding
MPR flooding

Figure 7. Fixed Density: Data Delivery Delays.

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200 250 300 350 400 450 500

A
vg

. p
at

h
le

ng
th

Number of devices

Trickle flooding
Trickle flooding with AMI parameters

Classic flooding
MPR flooding

Figure 8. Fixed Density: Flooding Path Lengths.

longer paths than both Classic Flooding and MPR Flooding.

The difference between the average path lengths from MPR

Flooding to Trickle Multicast remains moderate, however

increases as the network grows larger (up to 37%). This can

be an issue for some applications: in LOADng for example,

this would increase the length of the discovered paths, thus

adversely affecting routing protocol performance.

C. Variable Number of Multicast Sources

Figures 9 and 10, depict the results for Variable Number

of Multicast Sources. For all three mechanisms, identical data

delivery ratios (approximately of 100%) were attained.

Figure 9 shows that the overhead incurred by Trickle

increases dramatically as the number of concurrent Multicast

Sources increases. Whereas for the previous scenarios featur-

ing only a single Mutlicast Source, the network load (control

and data) incurred by MPR Flooding was dramatically larger

than that of Classic Flooding and Trickle Multicast, as soon as

there are multiple concurrent Multicast Sources in the network,

Classic Flooding incurs a lower network load than Trickle

Multicast – and from 6 concurrent Multicast Sources, Trickle

Flooding incurs a higher network load than MPR Flooding

and Classic Flooding, both.

This sharp increase in network load, incurred by Trickle

when faced with multiple Multicast Sources, can be explained

by the requirement that all devices must generate the “sum-

mary packets” (section II), each of which grows as a function

of the number of Multicast Sources as each summary packet

carries information about all the current active sources, with

their associated sliding windows. Thus, Trickle Multicast is

negatively affected by the number of multicast sources.

Figure 10 depicts the data delivery delay. While the delays

remain constant and independent of number of Multicast

Sources for MPR Flooding and Classic Flooding, Trickle

Multicast experiences a decrease in delay as the number

of Multicast Sources grow – an 21% decrease between a

network with 1 Multicast Source and 30 Multicast Sources.

The explanation for this behaviour is, that the Trickle timers

are reset more often (due to inconsistencies detected more

frequently), causing more frequent (re)transmissions. Even so,

the data delivery delays incurred by Trickle Multicast remain,

consistently, substantially larger than those incurred by Classic

Flooding and MPR Flooding.

D. Loss Resilience

Figures 11 and 12 depict the Loss Resilience of the three

mechanisms. While the model for packet loss used was very

simple, it does provide some insight into the behaviour of

Trickle Multicast in lossy environments. While the data deliv-

ery delays for Trickle Multicast grow dramatically (figure 11)

as the loss rate increases, its data delivery rate (figure 12) stays

consistently high – whereas it drops off for Classic Flooding

and MPR Flooding. From among the three mechanisms, MPR

Flooding is the most vulnerable to lossy links – this, simply,

as MPR Flooding optimises flooding by eliminating redundant

copies of multicast data packets, present in the network.

Proceedings of ICCT2013

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 5 10 15 20 25 30 35 40

N
et

w
or

k
Lo

ad
 (K

B
)

Number of sources

Trickle flooding
Classic flooding

Trickle flooding with AMI parameters
MPR flooding

Figure 9. Variable Number of Multicast Sources: Network Load (control +
data).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40

D
at

a
D

el
iv

er
y

D
el

ay
s

(s
)

Number of sources

Trickle flooding
Classic flooding

Trickle flooding with AMI parameters
MPR flooding

Figure 10. Variable Number of Multicast Sources: Data Delivery Delays.

The gain in loss resilience of Trickle Multicast comes at a

cost of increased delay (of up to 1200% compared to classic

flooding in the simulations performed).

VII. CONCLUSION

This paper has evaluated the performance of Trickle Mul-

ticast, comparing with that of Classic Flooding and MPR

Flooding. Trickle Multicast was found to be resilient to very

lossy links, and to maintain an overall high data delivery ratio

when faced with such – whereas Classic Flooding and MPR

Flooding, both, fail to deliver acceptable delivery ratios in

these scenarios. On the other hand, in networks with more

reliable links, Trickle Multicast exhibit less excellence.

The simulations have shown that the performance of Trickle

Multicast is highly sensitive to the choice of parameters:

the simulations showed that the same set of parameters can

render Trickle Multicast the best or worst performer in a

given scenario – and, in some cases, an inadequate choice

of parameters makes Trickle Multicast a far worse solution

that Classic Flooding, both in terms of overhead and delay,

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100

D
at

a
D

el
iv

er
y

D
el

ay
s

(s
)

Packet drop rate (%)

Trickle flooding
Classic flooding

MPR flooding

Figure 11. Loss Resiliance: Data Delivery Delays.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

P
ac

ke
t d

el
iv

er
y

ra
tio

Packet drop rate (%)

Trickle flooding
Classic flooding

MPR flooding

Figure 12. Loss Resilience: Data Delivery Ratio.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

N
et

w
or

k
Lo

ad
 (

K
B

)

Packet drop rate (%)

Trickle flooding
Classic flooding

MPR flooding

Figure 13. Loss Resilience: Network Load.

Proceedings of ICCT2013

while not achieving any better multicast data delivery ratio.

This poses two challenges in the use of this protocol for

real life network scenarios: first, more in-depths experimental

studies are be needed for each particular use-cases, in order

to understand how to choose the appropriate parameters.

Second, the sensitivity exhibited by Trickle Multicast makes it

vulnerable to changes in network conditions over the duration

of the network lifetime – which, for sensor networks, is an

expected operational condition.
An additional observation for Trickle Multicast is, that its

performance (network load and delays incurred) depends on

the number of concurrent Multicast Sources active in the net-

work: while with a single Multicast Source, Trickle Multicast

may exhibit a reasonably low overhead, the size of the control

signals that Trickle Multicast employs is proportional to the

number of Multicast Sources. Thus, the network load incurred

by Trickle Multicast rapidly exceeds that incurred when using

MPR Flooding and Classic Flooding, when there are more

than one Multicast Source.
Thus, to make Trickle Multicast generally applicable for

autonomous sensor networks, it is necessary to further in-

vestigate how to (i) detect changes in network conditions

and (ii) automate the adaptation and installation of such

configuration parameters. Furthermore, a deployment should

carefully consider the number of Multicast Sources expected

in the network (at installation and in the future), in order to

understand if the network load incurred by Trickle Multicast

is commensurate with the network capacity, and the delays

incurred on data delivery are acceptable to application. Finally,

any use of Trickle Multicast should consider the implications

of the Trickle Multicast trade-offs: as indicated, e.g., if using

Trickle Multicast for flooding routing protocol control signals,

the longer paths that these control signals will take may cause

a routing protocol to discover longer routes and thus ultimately

degrade unicast performance.

REFERENCES

[1] T. Clausen, A. C. de Verdiere, J. Yi, A. Niktash, Y. Igarashi, H. Satoh,
and U. Herberg, “The lln on-demand ad hoc distance-vector routing
protocol - next generation,” The Internet Engineering Task Force,
January 2013, internet Draft, work in progress, draft-clausen-lln-loadng-
08.

[2] “ITU-T G.9903: Narrow-band orthogonal frequency division multi-
plexing power line communication transceivers for G3-PLC networks:
Amendment 1,” May 2013.

[3] T. Clausen, J. Yi, and A. C. de Verdiere, “Loadng: Towards aodv
version 2,” in Proceedings of the 2012 IEEE 76th Vehicular Technology
Conference: VTC2012-Fall, September 2012.

[4] J. Macker, “Simplified Multicast Forwarding,” RFC 6621
(Experimental), Internet Engineering Task Force, May 2012. [Online].
Available: http://www.ietf.org/rfc/rfc6621.txt

[5] C. Adjih and L. Viennot, “Computing connected dominated sets with
multipoint relays,” Journal of Ad Hoc and Sensor Wireless Networks,
Tech. Rep., 2002.

[6] R. Ogier and P. Spagnolo, “Mobile Ad Hoc Network (MANET)
Extension of OSPF Using Connected Dominating Set (CDS) Flooding,”
RFC 5614 (Experimental), Internet Engineering Task Force, Aug. 2009.
[Online]. Available: http://www.ietf.org/rfc/rfc5614.txt

[7] J. A. Cordero, T. Clausen, and E. Baccelli, “Mpr+sp: Towards a unified
mpr-based manet extension for ospf.” Hawaii International Conference
on System Sciences, January 2011.

[8] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks,” in In Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI, 2004, pp. 15–28.

[9] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The Trickle
Algorithm,” RFC 6206 (Proposed Standard), Internet Engineering Task
Force, Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6206.txt

[10] J. Hui and R. Kelsey, “Multicast forwarding using trickle,” Internet Draft,
work in progress, draft-hui-6man-trickle-mcast, January 2011.

[11] T. H. Clausen, L. Viennot, T. Olesen, and N. Larsen, “Investigating data
broadcast performance in mobile ad-hoc networks,” in In Proceeding
of Wireless Personal Multimedia Communications. MindPass Center for
Distributed Systems, Aalborg University and project Hipercom, INRIA
Rocquencourt, Fifth International Symposium on Wireless Personal
Multimedia Communications, 2002.

[12] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The
broadcast storm problem in a mobile ad hoc network,” in
Proceedings of the 5th annual ACM/IEEE international conference
on Mobile computing and networking, ser. MobiCom ’99. New
York, NY, USA: ACM, 1999, pp. 151–162. [Online]. Available:
http://doi.acm.org/10.1145/313451.313525

[13] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint relaying: An
efficient technique for flooding in mobile wireless networks,” INRIA
Research Report No. RR-3898, 2000.

[14] T. Clausen, C. Dearlove, and B. Adamson, “Jitter Considerations in
Mobile Ad Hoc Networks (MANETs),” RFC 5148 (Informational),
Internet Engineering Task Force, Feb. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5148.txt

[15] D. Popa, J. Jetcheva, N. Dejean, R. Salazar, J. Hui, and K. Monden,
“Applicability statement for the routing protocol for low power and lossy
networks (rpl) in ami networks,” Internet Draft, work in progress, draft-
hui-6man-trickle-mcast, May 2012.

[16] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
Internet Engineering Task Force, Mar. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6550.txt

[17] T. H. Clausen, P. Jacquet, and L. Viennot, “Optimizing route length in
reactive protocols for ad hoc networks,” in In Proceeding of The First
Annual Mediterranean Ad Hoc Networking Workshop, 2002.

