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Abstract—This paper analyzes and evaluates the Distributed
Node Consensus Protocol (DNCP), a state synchronization mech-
anism developed by the IETF Homenet working group. DNCP
enables network function automation for home networks, which
are growing in size and complexity. The basic mechanisms of
DNCEP are studied in this paper, including the state abstraction,
synchronization process and keep-alive mechanism. The over-
head is analyzed in single-link topology type. To evaluate the
performance of DNCP in more complex scenarios, a reference
implementation of DNCP is integrated into ns3 simulator. The
convergence time and transmission overhead in various topology
types are measured. Based on the obtained results, the correctness
of DNCP is verified, and the behavior of DNCP can be concluded.

I. INTRODUCTION

With the advances in micro-controller and wireless tech-
nology, the concept of “being online” is no longer exclusively
reserved for computers, but expected also for phones, vehicles,
televisions, refrigerators, utility meters, etc. “The Internet of
Things” (IoT) assumes objects in our environment to be part
of the Internet, communicating with users and with each
other. Even in a home network, there can be body sensors,
electric meters, water meters, temperature sensors, fire alarms,
computers, etc., which are all connected to the Internet. As a
consequence, how to manage more complex home networks
is becoming an important issue.

A. Background

The Home Networking Working Group (Homenet) was
chartered in 2011 by the IETF! focusing on residential net-
works’ next generation protocols. Unlike current home net-
works, which commonly comprise a single residential gateway
performing Network Address Translator with a single IPv4
address, future home networks will:

o provide end-to-end connectivity based on IPv6;

« comprise multiple routers (e.g., WiFi extension, devices
hosting virtual machines, IoT gateway) and links (e.g.,
wired, wireless, low power);

o be connected to the internet through multiple uplinks
(e.g., cable, mobile or VPN).

One of the most important challenge is to provide basic
network management (prefix and address assignment, routing,
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name resolution, service discovery, etc.) in a way which does
not imply any configuration input from the user.

To resolve the issue, the Distributed Node Consensus Pro-
tocol (DNCP) [1] is currently being developed by the IETF
Homenet working group as a generic state synchronization
protocol. It makes use of hash trees and the Trickle algorithm
[2] and provides neighbor discovery as well as dead neighbor
detection, topology discovery, and allows every participating
node to publish information that is propagated to all other
nodes. Originally designed for home networks, DNCP can also
be used for other networks that require synchronization be-
tween nodes. Some DNCP parameters are therefore specified
by specific profiles. For example, the DNCP profile to be used
in home networks is specified as part of the Home Networking
Control Protocol (HNCP) [3].

Features provided by DNCP are very close to what any
link state routing protocol such as OSPF (Open Shortest Path
Forwarding) [4] would provide. But the Homenet working
group decided to develop a distinct protocol in order to not
interfere with the routing protocol operations and specifica-
tions. In addition, as it uses Trickle, DNCP is more suitable
to networks in which state changes infrequently.

B. Statement of Purpose

HNCP, based on DNCP, is a fundamental element of future
home networks protocol stack. The protocol was specified
in parallel to a reference implementation (The hnet project:
http://www.homewrt.org/) and was therefore tested on small
scale testbeds, but there has not been any analysis of the
protocol behavior and performances at different scales and on
different topologies yet.

In the literature, there has been some work analyzing
the performances of the Trickle Algorithm. [5] models the
broadcasting process of a network using Trickle with a Markov
chain and measures the Trickle’s message count. In [6],
qualitative results are provided to study the algorithm in
wireless sensor environments. [7] presents an analytic model
of a static Trickle-based network under steady state conditions,
as a function of the redundancy constant and the average node
degree. From the aspect of convergence, [8] analyzes end-to-
end delay distributions in terms of the Trickle parameters and
network density.



Nevertheless, there are some important differences between
the way Trickle was designed to function in wireless sensor
networks [9] and the way it is used by DNCP. This paper, to
the best of the authors’ knowledge, provides the first analysis
and evaluation of DNCP in various large scale networks with
different topology types.

C. Paper Outline

The remainder of this paper is organized as follows: Section
IT analyzes the basic behavior of DNCP, including its syn-
chronization process and keep-alive mechanism. The number
of packets and time needed for network convergence are
analyzed when all the nodes are connected to a single link. To
further study DNCP performance in more complex scenarios
with different network topologies, network simulations are
conducted in section III. Section IV concludes this paper .

II. ANALYSIS OF THE DISTRIBUTED NODE CONSENSUS
PrOTOCOL

A. DNCP Overview

In a DNCP network, each node publishes a set of node data
TLV (Type-Length-Value) tuples. DNCP defines three types of
such TLVs: Peer, Keep-Alive interval and Trust-Verdict. Other
TLVs are defined by DNCP profiles, e.g., assigned prefix, node
address or node name TLVs, defined by HNCP.

A two level hash tree is used for synchronization, as shown
in figure 1. Each node data (in ascending TLV order) is first
hashed into a Node State Hash using a profile-specific hash
function. Each of these Node State Hash is then concatenated
with its respective node’s sequence number to form a datum,
and the Network State Hash is calculated over all the nodes’
data in ascending order according to their node identifier,
which represents the view that a node has of the network state.
The protocol can thus verify if two nodes shares the same
information by simply comparing the Network State Hash.
The Network State Hash transmission is controlled by Trickle
algorithm.

Node 1 Data Node n Data

| H<tlv 1> <tlv2>...<tlv k>) |

View of a Node [ Node 1 State Hash ] [ Node n State Hash ]

| H(<Nodel #seq><Hash 1> ... <Node n #seq><Hash n>) |

Network State Hash

DNCP Hash Tree

View of the Network
Figure 1.

The Trickle algorithm [2] is a distributed exponential back-
off-based inconsistency detection algorithm. It limits its trans-
missions when the network is consistent but is reactive when
an update needs to be done. The algorithm has 4 parameters:

o Redundancy constant k.

e The minimal interval size I,,;, and the maximal interval
size Inaz-

e The listen-only parameter 7, defining the length of a
listen-only period.

In addition to these parameters, Trickle requires consistent
and inconsistent messages to be defined. In DNCP, a consistent
message is a message which Network State Hash is the same as
the locally computed Network State Hash. But DNCP makes a
non-typical use of Trickle as it does not reset Trickle timer on
receiving an inconsistent message. Instead, the Trickle timer
is only reset when the locally computed Network State Hash
changes. This approach offers the advantage of being less
verbose and does not suffer from unidirectional links.

B. Synchronization Process

The synchronization process of DNCP is different from the
protocols in which Trickle is commonly used (e.g., the IPv6
Routing Protocol for Low-Power and Lossy Networks [10]).
Instead, Trickle is only used to detect differences in neighbor’s
Network State Hash (i.e., the root in figure 1), and unicast
communications follow in order to synchronize states when
necessary, as shown in figure 2. When Node B receives a
Network State TLV from Node A, it first checks if the included
network state hash is consistent with the locally calculated
network state hash. If the hash values are different, it indicates
that the Node A and Node B do not share a common view of
the network and the following process is followed:

1) After waiting a random jitter between [0, I,,;, /2] (to re-
duce the collision probability), Node B replies a Request
Network State TLV.

2) Upon receipt of the Request Network State TLV, Node
A sends a message including a Node State TLV for each
node state used to calculate the network state hash. They
contain node’s meta-data such as the Node State Hash.
The actual Node Data is not included.

3) Upon receipt of the Node State TLVs, Node B is able to
detect which nodes have more recent information, and
sends back Request Node State TLVs to the correspond-
ing node.

4) Node A replies by sending Network State TLV contain-
ing the Node Data TLVs of the requested nodes.

5) Node B can thus update the local node data base with
the Node Datas received, and reset the Trickle timer.
The next Trickle message will be sent out after waiting

Compared to usual applications of the Trickle algorithm,

DNCP has additional message exchanges and delays (due to
jitter, round trip time of messages, etc.). In [5], it is proved that
in a stable single link network with n nodes and redundancy
constant set to k, the expected message count needed for a
single update is:

For n > 0:
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Figure 2. DNCP synchronization message exchange

which indicates the message count is bounded by k/7 as
n — oo, with convergence rate of /n.

In an equivalent DNCP network, when a single node updates
its Node Data, other nodes will detect the change by the
mean of an inconsistent Trickle-based Network State multicast
transmission, and will then synchronize by the mean of 4
unicast transmissions. The additional DNCP overhead is thus
4 x (n — 1) packets transmissions for the whole network.

DNCP also performs an additional optimization when trans-
missions do not need to be encrypted. When all Node State
TLVs can be put within a single multicast packet without
exceeding the minimal IPv6 MTU, Node State TLVs without
the node data are directly put in the Trickle-based multicast
packets. In such situation, synchronization only requires 2 uni-
cast transmissions instead of 4, inducing a reduced overhead
of 2 x (n — 1) packets transmissions.

C. Keep-Alive Mechanism

The Trickle algorithm reacts fast on new information update,
however, it may also prevent a node from sending messages
for a long time. As shown in figure 3, the network is already
converged at tp, i.e., Node A and Node B share the same
information. With a redundancy constant £ = 1, Node A trans-
mits at tg, thus suppresses Node B’s scheduled transmission
at t1. After the waiting interval of each node expires, Node
A and Node B schedule the next transmission at to and ¢3
respectively. It turns out that ¢o is before t3, the transmission
of Node B is thus suppressed again.

When there is no other mean of detecting neighbors de-
parture, DNCP makes use of a “keep-alive” mechanism. If
it is applied per-link, in which multicast is supported in the
network, a Network State message is sent on a link whenever
no message was sent on that link for a defined keep-alive
interval. This results in a lower-bound traffic of n transmitted

to t2
Node A >
Node B % % >
ti ts time
Figure 3. An example of Trickle message suppression

packet per keep-alive interval. If keep-alive is applied per-
peer, in which case only unicast is used, the Network State
messages are sent point-to-point, which produces at least (;‘)
per keep-alive messages interval.

Therefore, in either consistent state or inconsistent state, it
is expected that DNCP will generate more traffic than most
simple Trickle based protocols.

III. PROTOCOL EVALUATION

In the previous section, the behavior of DNCP is studied
and the performance is analyzed in single link networks. To
further investigate the characteristics of DNCP in scenarios
with more complex topology types, it is evaluated with the
help of ns3 network simulator.

This section first introduces the environment and protocol
parameters used for the simulations, and then discusses the
obtained results.

A. Simulation Environment

ns-32 is used for simulating the DNCP protocol. It is a
discrete-event network simulator for Internet systems and the
next generation of the famous ns-2 simulator (although the
design is very different and they are not compatible). For the
purpose of these simulations, libdncp® is modified so that it
can run over the ns-3 simulator, and the same DNCP profile
as the one specified by HNCP is used.

ns-3’s CSMA (Carrier Sense Multiple Access) model is used
to simulate Ethernet-like links. IPv6 and UDP are used as layer
3 and layer 4 protocol respectively. The simulation architecture
is shown in figure 4. Each setting is run for 40 times.

The parameters are set as in table I. The default DNCP
profile as specified in [3] is applied. As ns3 does not include
a packet processing delay, an additional 1 millisecond delay is
added between IP packet reception and packet processing by
the DNCP layer. The link parameters are set as to provide a
maximum throughput which DNCP is not expected to exceed.

Simulated networks have n (with n varies from 5 to 100)
nodes. Two metrics are used to evaluate DNCP performance:

e Protocol overhead: The number of packets transmitted
before convergence.

e Convergence time: The time needed for the network to
converge.

Zhttps://www.nsnam.org/
3https://github.com/sbyx/hnetd/
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Figure 4. Simulation architecture with ns-3

[ Parameter [ Value |
CSMA data rate 1Gbps
Layer 2 MTU 1500 bytes
Propagation delay 1 microsecond
Packet processing delay 1 millisecond
Trickle redundancy constant k 1
Trickle I,,in 200ms
Trickle Iqz 40 seconds
Trickle listen-only parameter 7 1/2
DNCP keep alive interval 24 seconds
Table 1

SIMULATION SETTINGS

The following representative topology types are considered,
as shown in figure 5.

Single link: all the nodes are on the same link. Each node
has n — 1 neighbors.

Star: consists of one single central node. All the other
nodes have a single link to a central node.

String: all nodes are chained one after the other. Each
node has two neighbors (except the two extremities).
Tree: a binary tree. Tree topology is typical in simple
network deployment.

Double tree: a variant of binary tree, in which each
node is paired with a redundancy node. It is common
in scenarios in which backup routes are desired, such as
professional networks.

Two types of node updates are simulated:

Single Node Update: The simulation starts will all nodes
in a converged state, i.e., they already share the same
information. A chosen node (the red ones in figure 5) will
begin sending update information, and DNCP will be in
charge of propagating the update to the whole network.
Network Initialization: All the nodes simultaneously start
synchronizing with each other until the network is con-
verged. It is a worst case scenario in terms of convergence
and may for instance happen after a power supply failure.

B. Simulation Results

1) Single Node Update: Figure 6 illustrates the packet
overhead of single link networks. Each point represents the
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Figure 5. Simulation topology

value of one simulation. The analytic curve is also plotted
following the analysis in section II-B. The simulation results
are divided into two segments around 50 nodes. This is the
threshold from which DNCP can not carry all Node State TLV's
within a single multicast [Pv6 MTU. Before the threshold,
optimization is used. Also note that when there are more than
70 nodes, the overhead is higher than the expected value. This
is due to that fact that more Node State TLVs have to be
carried, causing packets to exceed the link MTU, and cause
IP fragmentation.
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Figure 6. Protocol overhead of single link networks, single node update

Figure 7 and figure 8 depict the protocol overhead of
star, string, tree, and double tree networks respectively. The
segmentation due to the protocol optimization can also be
observed.

Figure 9 shows the convergence time of single link and star
networks. Both topology types have almost constant behavior
as the number of node grows, except that the single link is
segmented at the point of fragmentation (around 70 nodes).
For the star networks, as it’s the central node which triggers
the update, the convergence time is much more stable. For
the string topology (figure 10), the behavior is very different:
the convergence time grows linearly with the number of nodes
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(i.e., number of hops of the networks), because the update has
to be propagated hop-by-hop to the other end of the network.
Each hop corresponds to ~150 milliseconds, which is mainly
due to the jitter and listen-only period, as indicated in figure
2. The impact of hops of the network can also be observed
in figure 11 for tree topology types, in which each “step”
indicates a depth growth of the tree.
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Figure 9. Convergence time of single link and star networks, single node

update

2) Network Initialization: Figure 12 and 13 illustrate the
protocol overhead of different topology types in network
initialization scenarios. The single link networks have the
most significant overhead, as each node have to synchronize
with every other neighbor. Whereas for star networks, as all
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Figure 10. Convergence time of string networks, single node update
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synchronizations have to go through the central node, the
overhead can be greatly reduced. The double tree topology
type, although with less hop count than the single tree topology
type, has higher overhead. It can be concluded that the average
number of neighbors is the most important factor of the packet
overhead during the network initialization.
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Figure 12.  Protocol overhead of single link, star and string networks

initialization

Figure 14 and 15 depict the convergence time for network
initialization. In most scenarios (except the string topology
type), the networks are able to converge in several seconds.
The star topology type has the best performance, in which
case the time required is close to constant.

The simulation results convey that for a given topology type,
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the message overhead N o< Nb2 and N o d, where N, is
average number of neighbors and d is the network diameter.
For the convergence time, it can be concluded that 7" o< N,
and T o d.

IV. CONCLUSION

DNCP, a fundamental block for home networks that syn-
chronizes information between the nodes, is studied in this
paper. The basic functions of DNCP, including hash tree, syn-
chronization process and keep-alive mechanism are analyzed.
The correctness of the protocol is verified.

To evaluate the protocol with different topology types
and larger networks, the reference implementation libdncp is

integrated in ns3 for simulation study. The protocol overhead
and time needed for network convergence are measured using
the same DNCP profile as HNCP.

The results show that the DNCP is able to converge quickly
(less than 10 seconds) in most scenarios, for both single
node update and network initialization. On the other hand,
the protocol overhead depends on the topology type of the
network. In dense networks (such as single link topology),
non-trivial amount of packets are required to initialize the
network. Overall, the simulation results show that DNCP
behaves correctly in typical home networks.

For a specific topology, the number of nodes has significant
impact to the packet overhead. If the node state TLVs can be
carried in one Trickle multicast packet, half of the packets can
be saved by using the multicast optimization. From the aspect
of time needed for convergence, it is linear with the radius of
the network.

Future work includes evaluating performances of DNCP in
networks with fragile links, as well as optimizing the overhead
in dense scenarios.
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