Implementing a New Manet Unicast Routing
Protocol in NS2

Francisco J. Ros
Pedro M. Ruiz

{fjrm, pedrom}@dif.um.es

Dept. of Information and Communications Engineering
University of Murcia

December, 2004

Copyright (c¢) 2004 Francisco J. Ros and Pedro M. Ruiz.

Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section
entitled ”GNU Free Documentation License”.

Contents

Introduction
Getting Started
Packet Types

The Routing Agent

41 Tclhooks o
4.2 Timers
4.3 Agent
4.3.1 Constructor L oL
432 command() L.
433 reev() ...
4.3.4 recv_protonamepkt()
4.3.5 send_protoname pkt()
4.3.6 reset_protoname_pkt_timer().
4.3.7 forward data()

The Routing Table

Needed Changes

6.1 Packet type declaration
6.2 Tracing support oL
6.3 Tcllibrary
6.4 Priority queue. L
6.5 Makefile o

Receiving Information from Layer-2 Protocols
Support for Wired-Cum-Wireless Simulations

GNU Free Documentation License

. APPLICABILITY AND DEFINITIONS

. VERBATIM COPYING

. COPYING IN QUANTITY

. MODIFICATIONS

. COMBINING DOCUMENTS

. COLLECTIONS OF DOCUMENTS

. AGGREGATION WITH INDEPENDENT WORKS

. TRANSLATION

. TERMINATION

18

20
20
21
23
24
25

25

27

29

29

30

31

31

33

33

34

34

34

10. FUTURE REVISIONS OF THIS LICENSE 34

1 Introduction

During the last year, we have witnessed a lot of people asking for the same
question in the ns-users mailing list. How do I develop my own protocol for
NS2? By writing this document we hope to help those researchers who need to
add a manet routing protocol for NS-2.27. We focus our document in unicast
protocols. The document is aimed to those people who are somehow familiar
with performing simulations in ns-2, and they want to go one step forward to
implement their own protocols. Everything we describe in this text is related
to version 2.27 of NS2, but it might be useful for other versions as well.

We assume that the reader is familiar with the NS2 basics. That means hav-
ing read and at least mostly understood “Marc Greis’ Tutorial” [1]. It would be
very useful if you also take a look at “The ns Manual” [2], specially chapters 3-5,
10-12, 15-16, 23, 25 and 29. We will refer to them several times throughout this
text and encourage you to read them. Before coding your own routing protocol,
you should know how to perform simulations with other implemented protocols
and you are expected to feel familiar and comfortable with simulator. This will
avoid lots of misunderstandings and doubts while reading this document.

Besides this tutorial is about programming. You need knowledge about C++
and (a little) Tel programming. If you aren’t enough experienced with these
programming lenguages, you should firstly read any of the excellent resources
about them which are freely available in the Internet.

2 Getting Started

We are going to implement a new manet routing protocol called protoname
step by step. This protocol does nothing useful, but it is general enough to
have several common points with other routing protocols. As you likely know
(if not, please read firstly what we told you!) we are going to implement routing
protocol using C++ and then we will do simulations describing scenarios with
Tcl scripts.

To allocate our code we will firstly create a new directory called protoname
inside your NS2 base directory. We will create five files there:

protoname.h This is the header file where will be defined all necessary timers
(if any) and routing agent which performs protocol’s functionality.

protoname.cc In this file are actually implemented all timers, routing agent
and Tcl hooks.

protoname_pkt.h Here are declared all packets protoname protocol needs to
exchange among nodes in the manet.

protoname_rtable.h Header file where our own routing table is declared.

protoname_rtable.cc Routing table implementation.

You can organize your code as you want to. That is, you can create more or
less files, with those names or with others; this is only a hint. Our advice is to
use at least those files and to create more as they are needed.

Now we have our “physical” structure (files), let’s continue with the “logical”
one (classes). To implement a routing protocol in NS2 you must create an agent
by inheriting from Agent class. At the very beginning of chapter 10 [2] we can
read “Agents represent endpoints where network-layer packets are constructed or
consumed, and are used in the implementation of protocols at various layers”.
As you can figure out, this is the main class we will have to code in order to
implement our routing protocol. In addition, this class offers a linkage with T'cl
interface, so we will be able to control our routing protocol through simulation
scripts written in Tcl.

Our routing agent will maintain an internal state and a routing table (which
is not always needed). Internal state can be represented as a new class or as a
collection of attributes inside the routing agent. We will treat routing table as
a new class, protoname_rtable.

Also our new protocol must define at least one new packet type which will
represent the format of its control packets. As we said these packet types are
defined in protoname/protoname_pkt.h. When the protocol needs to send pack-
ets periodically or after some time from the occurrence of an event, it is very
useful to count on a Timer class. We show an example in which we code our
own timers for sending these packets at regular intervals. Timers are also useful
in lots of other cases. Imagine protoname needs to store some sort of internal
information which must be erased at a certain time. The best solution is to
create a custom timer capable of doing such job. A timer should also be used to
specify timelife of an entry in the routing table. In general, we will use a timer
whenever we have to schedule a task at a given time.

There is another important class we must know before going into details.
The Trace class is the base for writing log files with information about what
happened during the simulation.

And the last hint for now: when you want to print a debug message in your
code, it is helpful to use the debug() function as it is suggested in chapter 25 [2].
This allows you to turn debugging on or off from your simulation scripts and is
easier to read for other programmers.

3 Packet Types

Now that you already know the basics, let’s create a new file and call it proton-
ame/protoname_pkt.h. Here we are going to put all data structures, constants
and macros related to our new packet(s) type. See next example.

protoname/protoname_pkt.h

#ifndef __protoname_pkt_h__
#define __protoname_pkt_h__

#include <packet.h>

DO WN -

#define HDR_PROTONAME_PKT(p) hdr_protoname_pkt::access(p)

7:
8: struct hdr_protoname_pkt {
9.

10: nsaddr_t pkt_src_; // Node which originated this packet

11: u_int16_t pkt_len_; // Packet length (in bytes)

12: u_int8_t pkt_seq num_; // Packet sequence number

13:

14: inline nsaddr_t& pkt_src() { return pkt_src_; }
15: inline u_int16_t& pkt_len() { return pkt_len_; }
16: inline u_int8_t& pkt_seq_num() { return pkt_seq_num_; }
17:

18: static int offset_;

19: inline static int& offset() { return offset_; }

20: inline static hdr_protoname_pkt* access(const Packet* p) {
21: return (hdr_protoname_pkt*)p->access(offset_);

22: }

23:

24: 3};

25:

26: #endif

Lines 8-24 declare hdr_protoname_pkt struct which represents the new
packet type we are defining. In lines 10-12 we can see three raw attributes our
packet has. They are of following types:

nsaddr_t Every time you want to declare a network address in NS2 you must
use this type.

u_int16_t 16 bits unsigned integer.

u_int8_t 8 bits unsigned integer.

All these types and more are defined in the header file config.h. We en-
courage the reader to have a look at this file and to use types defined there.
It’s also worth mentioning raw attributes’ names are expected to finish with an
underscore to distinguish them from other variables (see chapter 25 [2]).

Lines 14-16 are member functions for defined attributes. This is not manda-
tory but a “good practice” suggested in chapter 12 [2] (and we actually support
it!).

Line 4 includes file common/packet.h which defines Packet class (see chap-
ter 12 [2]). Packets are used to exchange information between objects in the
simulation, and our aim is to add our new struct hdr_protoname_pkt to them.
Doing so our control packets will be able to be sent and received by nodes in the
simulation. How can we do that? To answer this question we must know how all
packet headers are stored by Packet class, and the answer is by using an array
of unsigned characters (bag of bits) where packets’ fields are saved. To access
a concrete packet header is necessary to provide the offset where it is located.
And that’s exactly what we do through lines 18-22. We define a static (common
to all hdr_protoname_pkt structs) offset, a member function to access it and
a function which returns a hdr_protoname_pkt given a Packet. Moreover, in
line 6 we create a macro to use this last function.

There is one task left: to bind our packet header to Tcl interface. We will
do so in protoname/protoname.cc with the following code. As we can see we
are doing accesible through Tcl the offset of our packet header.

protoname/protoname.cc

: public:

3

0 N O O WN -~

ProtonameHeaderClass ()

int protoname_pkt::offset_;
static class ProtonameHeaderClass : public PacketHeaderClass {

} class_rtProtoProtoname_hdr;

4 The Routing Agent

: PacketHeaderClass("PacketHeader/Protoname",

sizeof (hdr_protoname_pkt)) {

bind_offset (&hdr_protoname_pkt::offset_);

Now we start programming the agent itself. Inside protoname/protoname.h we
define a new class called Protoname containing the attributes and functions
needed to assist the protocol in doing its job. To illustrate the use of timers
we assume that protoname is a proactive routing protocol that requires sending
out some control packets periodically. The next code shows such an example.

protoname/protoname.h

1: #ifndef __protoname_h__

2: #define __protoname_h__

3:

4: #include "protoname_pkt.h"
5: #include <agent.h>

6: #include <packet.h>

7: #include <trace.h>

8: #include <timer-handler.h>
9: #include <random.h>

10: #include <classifier-port.h>
11:

12: #define CURRENT_TIME

13: #define JITTER

14:

15: class Protoname;

16:

17: /* Timers */

18:

19: class Protoname_PktTimer : p
20: public:

21:

22: agent_ = agent;
23: }

24: protected:

25 Protonamex* agent_;

Scheduler: :instance() .clock()
(Random: :uniform()*0.5)

// forward declaration

ublic TimerHandler {

Protoname_PktTimer (Protoname* agent) : TimerHandler() {

26: virtual void expire(Eventx* e);

27: };

28:

29: /* Agent */

30:

31: class Protoname : public Agent {

32:

33: /* Friends */

34: friend class Protoname_PktTimer;

35:

36: /* Private members */

37: nsaddr_t ra_addr_;

38: protoname_state state_;

39: protoname_rtable rtable_;

40: int accesible_var_;

41 : u_int8_t seq_num_;

42:

43: protected:

44:

45: PortClassifierx* dmux_; // For passing packets up to agents.
46: Trace* logtarget_; // For logging.

47: Protoname_PktTimer pkt_timer_; // Timer for sending packets.
48:

49: inline nsaddr_t& ra_addr () { return ra_addr_; }
50: inline protoname_state& state() { return state_; }
51: inline int& accessible_var() { return accessible_var_; }
52:

53: void forward_data(Packet*);

54: void recv_protoname_pkt(Packet*);

55: void send_protoname_pkt();

56:

57: void reset_protoname_pkt_timer();

58:

59: public:

60:

61: Protoname (nsaddr_t) ;

62: int command (int, const char*constx*);

63: void recv(Packet*, Handlerx);

64:

65: };

66:

67: #endif

Lines 4-10 are used to include the header files required by our agent. Below
we explain what are they useful for.

protoname/protoname_pkt.h Defines our packet header.
common/agent.h Defines Agent base class.

common/packet.h Defines Packet class.

common/timer-handler.h Defines TimerHandler base class. We will use
it to create our custom timers.

trace/trace.h Defines Trace class, used for writing simulation results out to
a trace file.

tools/random.h Defines Random class, useful for generating pseudo-random
numbers. We will use it soon.

classifier /classifier-port.h Defines PortClassifier class, used for passing pack-
ets up to upper layers.

Line 12 defines a useful macro for getting current time in the simulator
clock. That’s done by accesing the single instance of Scheduler class. This
object manages all events produced during simulation and simulator’s internal
clock (see chapter 4 [2]).

Another macro is in line 13. It is just an easy way to obtain a random
number inside [0-0.5] interval. This is commonly used to randomize the sending
of control packets to avoid synchronization of a node with its neighbors, that
would eventually produce collisions and therefore delays at time of sending these
packets!.

Lines 19-27 declare our custom timer for sending periodical control pack-
ets. Our Protoname_PktTimer class inherits from TimerHandler and has
a reference to the routing agent which creates it. This is used as a callback
for telling routing agent to send a new control packet and to schedule the next
one. We shall see more on this later on, when we describe how to overload the
expire() method. To do these callbacks routing agent needs to treat Proton-
ame_PktTimer as a friend class (line 34).

The Protoname class is defined within lines 31-65. It encapsulates its own
address, internal state, routing table, an accessible variable from Tcl and a
counter for assigning sequence numbers to ouput packets (lines 37-41). proton-
ame_state_ could be a class itself or a set of attributes needed by the Protoname
class for doing its job. accessible_var_ is thought to be read and written from Tcl
scripts or shell commands. This is useful in many situations because it allows
users to change simulation behaviour through their scripts without re-compiling
the simulator.

A PortClassifier object is declared in line 45. You should read chapter 5 [2]
in order to understand node’s structure. There you will see how a node consists
of an address classifier and a port classifier. The first is used to guide incoming
packets to a suitable link or to pass them to the port classifier, which will carry
them to appropiate upper layer agent. That’s why the routing agent needs a
port classifier. When it receives data packets destined to itself it will use dmux_
in order to give them to corresponding agent?. The detailed architecture of a
mobile node is explained in chapter 16 of [2].

Another important attribute is the Trace object (see line 46). It is used to
produce logs to be store in the trace file. In our example we use it to write the

1This is a typical feature in manet routing protocols, but the real aim is to provide an
example of getting random numbers.

2Really this is not true. In fact data packets are directly delivered to their corresponding
agent, so the port classifier isn’t necessary for our routing agent. However we maintain this
explanation because NS-2.27 requires routing agent to accept port-dmuz operation (see section
4.3.2) as part of its API

contents of the routing table whenever the user requests it from the Tcl interface.
This is not necessary if you are only interested in writing tracing information
regarding packets. In that case, those logging functions are implemented in
other location (as we shall see in section 6).

Line 47 declares our custom timer. And lines 49-51 are member functions
to access some internal attributes.

Function at line 53 will be used to forward data packets to their correct
destination. The one at line 54 will be called whenever a control packet is
received, and that at line 55 is invoked for sending a control packet. Line 57
declares a function used in order to schedule our custom timer expiration.

Lines 61-63 contain public functions of class Protoname. Constructor re-
ceives as an argument an identifier used as the routing agent’s address. Pro-
toname inherits from Agent base class two main functions which need to be
implemented: recv() and command(). recv() is called whenever the agent re-
ceives a packet. This may occur when the node itself (actually an upper layer
agent such as UDP or TCP) is generating a packet or when it is receiving one
from another node. The command/() function is invoked from Tcl as is described
in chapter 3 [2]. It’s a way to ask the C++ object to do some task from our Tcl
code. You will understand this better once we’ll go through section 4.3.

Now that you know how Protoname’s interface is, it’s time to go on with its
implementation. The next subsections are related to the protoname/protoname.cc
file.

4.1 Tcl hooks

We saw in section 3 how to bind our own packet to Tcl. Now we will do the
same for our agent class. The aim is to let Protoname to be instantiated from
Tcl. To do so we must inherit from the class TclClass as depicted in the next
code.

protoname/protoname.cc

1: static class ProtonameClass : public TclClass {

2: public:

3 ProtonameClass() : TclClass("Agent/Protoname") {}

4: TclObject* create(int argc, const char*const* argv) {

5: assert(argc == 5);

6 return (new Protoname((nsaddr_t)Address::instance().str2addr(argv([4]1)));
7 }

8: } class_rtProtoProtoname;

The class constructor is in line 3 and it merely calls the base class with the
string “Agent/Protoname” as an argument. This represents class hierarchy for
this agent in a textual manner.

In ines 4-7 we implement a function called create() which returns a new
Protoname instance as a TclObject. argv is of the form “<object’s name>
<8$self> <$class> <$proc> <user argument>" (see chapter 3 of [2] for more in-
formation). In this particular case it is “<object’s name> < $self> Agent/Protoname
create-shadow <id>". Because of this, at line 6 we return a new Protoname
object with the identifier stated in argvf/]. We use the Address class to get a
nsaddr_t type from a string.

10

4.2 Timers

All we have to code in protoname/protoname.cc about timers is the expire()
method. Timers are detailed in chapter 11 [2]. Implementing this is pretty easy
because we only want to send a new control packet and to reschedule the timer
itself. According to our design decisions these two tasks must be executed by
the routing agent, so we invoke these callbacks as in the next example.

protoname/protoname.cc

1: void

2: Protoname_PktTimer::expire(Event* e) {
3: agent_->send_protoname_pkt () ;

4: agent_->reset_protoname_pkt_timer();
5: }

4.3 Agent

4.3.1 Constructor

Let’s begin with constructor implementation. As we can see in line 1 below, we
start by calling the constructor for the base class passing PT_PROTONAME as
an argument. This constant will be defined later (see section 6) and it is used
to identify control packets sent and received by this routing agent. In the same
line we create our Protoname_PktTimer object.

Just after that we bind accessible_var_ as a boolean attribute which now may
be read and written from Tcl. To bind this variable as an integer, we must use
the bind() function instead of bind_bool().

Line 3 saves the given identifier as the routing agent’s address.

protoname/protoname.cc

1: Protoname: :Protoname(nsaddr_t id) : Agent(PT_PROTONAME), pkt_timer_(this) {
2 bind_bool("accessible_var_", &accessible_var_);

3: ra_addr_ = id;

4: }

Accessing from Tecl scripts is fairly simple. The next example sets the value
of accesible_var_ to true.

simulation.tcl

1: Agent/Protoname set accesible_var_ true

4.3.2 command()

The next piece of code is a little bit more complicated. It consists of the imple-
mentation of the command() method that our agent inherites from the Agent
class.

protoname/protoname.cc

11

int
Protoname: : command (int argc, const char*const* argv) {
if (argc == 2) {
if (strcasecmp(argv[1], "start") == 0) {
pkt_timer_.resched(0.0);
return TCL_OK;

© 00 N O d W N+~

}
else if (strcasecmp(argv[1], "print_rtable") == 0) {
: if (logtarget_ != 0) {

10: sprintf (logtarget_->pt_->buffer(), "P %f _%d_ Routing Table",
11: CURRENT_TIME,
12: ra_addr());
13: logtarget_->pt_->dump() ;
14: rtable_.print(logtarget_);
15: }
16: else {
17: fprintf (stdout, "%f _%d_ If you want to print this routing table "
18: "you must create a trace file in your tcl script",
19: CURRENT_TIME,
20: ra_addr());
21: }
22: return TCL_OK;
23: b
24: }
25: else if (argc == 3) {
26: // QObtains corresponding dmux to carry packets to upper layers
27: if (strcmp(argv([1l], "port-dmux") == 0) {
28: dmux_ = (PortClassifier*)TclObject::lookup(argv[2]);
29: if (dmux_ == 0) {
30: fprintf (stderr, "Ys: %s lookup of %s failed\n",
31: __FILE__,
32: argv[1],
33: argv[2]);
34: return TCL_ERROR;
35: }
36: return TCL_OK;
37: }
38: // QObtains corresponding tracer
39: else if (strcmp(argv[1], "log-target") == 0 ||
40: strcmp(argv[1], "tracetarget") == 0) {
41: logtarget_ = (Tracex)TclObject: :lookup(argv[2]);
42: if (logtarget_ == 0)
43: return TCL_ERROR;
44 : return TCL_OK;
45: }
46: }
47: // Pass the command to the base class
48: return Agent::command(argc, argv);
49: }

12

argu[0] contains the name of the method (always “cmd”, see chapter 3 [2])
being invoked, argv[l] is the requested operation, and argv/2..argc-1] are the
rest of the arguments which were passed. Within this function we must code
some mandatory operations as well as any other operation that we want to make
accesible from Tcl. As an example we will code an operation called print_rtable
which dumps the contents of the routing table’s to the trace file.

We focus our code only in cases where we have two or three arguments,
so that you can see how to process them. Each case must finish its execution
returning either TCL_OK (if everything was fine) or TCL_ERROR (if any error
happened).

Lines 4-7 describe a mandatory command that we always have to imple-
ment:start. The expected behaviour of this command is to configure the agent
to begin its execution. In our case it starts its packet sending timer. We should
implement here all the required actions that the routing agent must perform in
order to begin its operation.

Lines 8-23 implement our print_rtable command. We firstly check if logtarget_
is initialized (line 9). Then we dump the table into the trace file as is showed
in lines 10-13. To understand this piece of code it would be useful that you
take a look into the trace/trace.h header file. There is where the Trace class
is defined. It has a reference to pt_ of the BaseTrace class. This last class
implements buffer() and dump() functions which are used to get the variable
where output is buffered and to flush that buffer to the output file respectively.
Finally, line 14 calls the print() function of our routing table for writing into
trace file its own content. The TCL code below shows how to execute the
print_rtable operation at a certain time from a simulation script. It assumes
that ns_ contains an instance of Simulator and node_ is a Node created by
ns.. We are passing 255 as argument because this is the number of the port
where a routing agent is attached to.

simulation.tcl

1: $ns_ at 15.0 "[$node_ agent 255] print_rtable"

Another mandatory command to implement is port-dmux. Its implementa-
tion is provided in lines 27-37. As explained in chapter 3 of [2], NS stores a
reference to every compiled object (C++ object) in a hash table to provide a
fast access to each of them given its name. We make use of that facility in line
28 to obtain a PortClassifier object given its name.

Similarly, there is another mandatory operation called tracetarget (note that
we a allow it to be called log-target as well) which simply obtains a Trace object
given its name.

If we don’t know how to process the requested command, we delegate this
responsability to base class, as we do in line 48.

4.3.3 recv()

Next function is recv() and as we know is invoked whenever the routing agent
receives a packet. Every Packet has a common header called hdr_cmn defined
in common/packet.h. To access this header there is a macro like the one we
defined before for our own packet type, and we use it at line 3. Line 4 does the
same but in order to get IP header, hdr_ip, described in ip.h.

13

1: wvoid

2: Protoname::recv(Packet* p, Handler* h) {

3: struct hdr_cmn* ch = HDR_CMN(p);

4: struct hdr_ipx* ih = HDR_IP(p);

5:

6: if (ih->saddr() == ra_addr()) {

7: // If there exists a loop, must drop the packet
8: if (ch->num_forwards() > 0) {

9: drop(p, DROP_RTR_ROUTE_LOOP);

10: return;

11: }

12: // else if this is a packet I am originating, must add IP header
13: else if (ch->num_forwards() == 0)

14: ch->size() += IP_HDR_LEN;

15: }

16:

17: // If it is a protoname packet, must process it

18: if (ch->ptype() == PT_PROTONAME)

19: recv_protoname_pkt (p) ;

20: // Otherwise, must forward the packet (unless TTL has reached zero)
21: else {

22: ih->ttl_--;

23: if (ih->ttl_ == 0) {

24: drop(p, DROP_RTR_TTL);

25: return;

26: }

27: forward_data(p) ;

28: }

29: }

First thing we should do is to check we are not receiving a packet we sent
ourselves. If that is the case we should drop the packet and return, as we do
in lines 8-11. In addition, if the packet has been generated within the node (by
upper layers of the node) we should add to packet’s length the overhead that
the routing protocol is adding (in bytes). We assume protoname works over IP,
as it is shown in lines 13-14.

When the received packet is of type PT_PROTONAME then we will call
recv_protoname_pkt() to process it (lines 18-19). If it is a data packet then
we should forward it (if it is destined to other node) or to deliver it to upper
layers (if it was a broadcast packet or was destined to ourself), unless TTL3
reached zero. Lines 21-28 do what we have just described making use of the
forward_data() function.

You would have realized that the drop() function is used for dropping pack-
ets. Its aarguments are a pointer to the packet itself and a constant giving the
reason for discarding it. There exist several of these constants. Uou can take a
look at them in the file trace/cmu-trace.h.

3 Time To Live of the packet according to IP header.

14

4.3.4 recv_protoname_pkt()

Let’s assume that the routing agent has received a protoname packet, making
the recv_protoname_pkt() to be invoked. The implementation of this function
will vary a lot depending on the concrete protocol, but we can see a general
scheme in the next example.

Lines 3-4 get IP header and protoname packet header as usual. After that
we make sure source and destination ports are RT_PORT at lines 8-9. This
constant is defined in common/packet.h and it equals 255. This port is reserved
to attach the routing agent.

After that, the protoname packet must be processed according to our routing
protocol’s specification.

Finally we must release resources as we do in line 14.

1: void

2: Protoname: :recv_protoname_pkt(Packet* p) {

3: struct hdr_ip* ih = HDR_IP(p);

4: struct hdr_protoname_pkt* ph = HDR_PROTONAME_PKT (p);
5:

6: // All routing messages are sent from and to port RT_PORT,
7: // so we check it.

8: assert(ih->sport() == RT_PORT);

9: assert(ih->dport() == RT_PORT);

10:

11: /* ... processing of protoname packet ... */

12:

13: // Release resources

14: Packet::free(p);

15: }

4.3.5 send_protoname_pkt()

We saw in section 4.2 how our custom timer calls the function send_protoname_pkt()
whenever it expires. We show a sample implementation of this function below.
Needless to say that each protocol requires something different and this is just
an example.

protoname/protoname.cc

1: wvoid

2: Protoname: :send_protoname_pkt() {

3: Packet* p = allocpkt();
4: struct hdr_cmn* ch = HDR_CMN(p) ;
5: struct hdr_ip* ih = HDR_IP(p);
6: struct hdr_protoname_pkt* ph = HDR_PROTONAME_PKT (p);
7:

8: ph—>pkt_src() = ra_addr(Q);

9: ph—->pkt_len() =7;

10: ph—>pkt_seq_num() = seq_num_++;

11:

12: ch->ptype) = PT_PROTONAME;

15

13: ch->direction() = hdr_cmn: :DOWN;

14: ch->size() = IP_HDR_LEN + ph->pkt_len();
15: ch->error() = 0;

16: ch->next_hop() = IP_BROADCAST;

17: ch->addr_type () = NS_AF_INET;

18:

19: ih->saddr () = ra_addr();

20: ih->daddr () = IP_BROADCAST;

21: ih->sport () = RT_PORT;

22: ih->dport () = RT_PORT;

23: ih->tt1() = IP_DEF_TTL;

24:

25: Scheduler: :instance() .schedule(target_, p, JITTER);
26: }

To send a packet we need fist to allocate it. We use the allocpkt() function
for that. This function is defined for all Agents. Then we get common, IP
and protoname packet headers as usual (lines 3-6). Our aim is to fill all these
headers with values we want to.

Protoname packet header is filled in lines 8-10. In our simple example we
only need source address of the agent, length (in bytes) of the message and a
sequence number. These fields are completely dependent on protoname’s packet
specification.

The common header in NS has several fields. We focus only on those in which
we are interested (lines 12-17). We need to set the packet type to a protoname
packet (line 12). We also assign the packet direction in line 13. As we are sending
a packet, it is going down, what is represented by hdr_cmn::DOWN constant.
The size of the packet is given in line 14. It is in bytes and this is the value
used for NS2 computations. What we mean is that it doesn’t matter real size
of your hdr_protoname_pkt struct. To calculate things such as propagation
delay NS2 will use the value you put in here. Continuing with common header,
in line 15 we decide not to have any error in transmission. Line 16 assigns the
next hop to which the packet must be sent to. This is a very important field,
and in our protocol it is established as IP_.BROADCAST because we want all
of the neighboring nodes to receive this control packet. That constant is defined
in common/ip.h and you can check there for other macros. The last field we fill
is the address type. It can be NS_LAF_NONE, NS_AF_ILINK or NS_AF_INET
(see common/packet.h). We choose NS_AF_INET because we are implementing
an Internet protocol.

Now we proceed with the configuration of the IP header. It is very simple
as we can see in lines 19-23. There is a new constant called IP_-DEF_TTL which
is defined in common/ip.h and represents the default TTL value for IP packets.
The IP header has other fields used for IPv6 simulations, but we don’t need
them for our example

Now we can just proceed sending the packet. Packets are events (see chapter
12 of [2]) so they need to be scheduled. In fact, sending a packet is equivalent
to schedule it at a certain time. Line 25 shows how to send a packet introducing
some jitter. The Packet class inherits from the Connector class, which has a
reference to a TclObject called target_. This is the handler which will process
the event, and is passed as an argument to the schedule() function.

16

4.3.6

reset_protoname_pkt_timer()

Our packet sending timer performs another callback (section 4.2) to reschedule
itself. It’s done in the function reset_protoname_pkt_timer(). We show that in
next example, where pkt_timer_ is rescheduled to expire five seconds later.

protoname/protoname.cc

D wWw N e

void
Protoname: :reset_protoname_pkt_timer() {
pkt_timer_.resched((double)5.0);

3

4.3.7 forward _data()

So far we have been mainly focused on protoname packets, but it’s time to
deal with data packets. The forward_data() function decides whether a packet
has to be delivered to the upper-layer agents or to be forwarded to other node.
We check for the first case in lines 6-10. When it is an incoming packet and
destination address is the node itself or broadcast, then we use the node’s dmuzx_
(if we remember it is a PortClassifier object) to accept the incoming packet.

Otherwise, we must forward the packet. This is accomplished by properly

setting the common header with as we do in lines 12-28. If the packet is a
broadcast one, then next hop will be filled accordingly. If not, we make use
of our routing table to find out the next hop (line 17). Our implementation
returns IP_.BROADCAST when there is no route to destination address. In
such a case we print a debug message (lines 19-22) and drop the packet (line
23). If everything goes fine then we will send the packet as we do in line 29.

protoname/protoname.cc

© 00 NO O W N+~

e
= O -

12:
13:
14:
15:
16:
17:
18:
19:
20:

void

Protoname: :forward_data(Packet* p) {
struct hdr_cmn* ch = HDR_CMN(p);
struct hdr_ip* ih = HDR_IP(p);

if (ch->direction() ==

hdr_cmn: :UP &&

((u_int32_t)ih->daddr() == IP_BROADCAST ||
dmux_->recv(p, 0.0);

return;

}

else {
ch->direction() =
ch->addr_type() =

if ((u_int32_t)ih->daddr() == IP_BROADCAST)

hdr_cmn: :DOWN;
NS_AF_INET;

ch->next_hop() = IP_BROADCAST;

else {

ih->daddr() == ra_addr())) {

nsaddr_t next_hop = rtable_.lookup(ih->daddr());
if (next_hop == IP_BROADCAST) {
debug("%f: Agent %d can not forward a packet destined to %d\n",
CURRENT_TIME,

17

21: ra_addr(),

22: ih->daddr());

23: drop(p, DROP_RTR_NO_ROUTE);

24 return;

25: }

26: else

27: ch->next_hop() = next_hop;

28: }

29: Scheduler: :instance() . schedule(target_, p, 0.0);
30: }

31: }

5 The Routing Table

You might not need a routing table, but if your protocol uses it then read this
section. We can implement the routing table as a different class or as any other
data structure (e.g. a hash table). We are going to show a class encapsulating
the functionality that a routing table is supposed to have. Internal information
may vary a lot from protocol to protocol. For each entry in routing table one
might want to store destination addresses, next hop addresses, distances or cost
associated to the routes, sequence numbers, lifetimes, and so on. Of course
our example illustrates a very simple routing table and a method to print it.
The only information we will store in each entry is destination and next hop
addresses. We use a hash table (map) as the storage structure. This case is too
simple to implement a new class, but we will do it as an example. The next
piece of code corresponds to protoname/protoname_rtable.h.

protoname/protoname_rtable.h

1: #ifndef __protoname_rtable_h__

2: #define __protoname_rtable_h__

3:

4: #include <trace.h>

5: #include <map>

6:

7: typedef std::map<nsaddr_t, nsaddr_t> rtable_t;
8:

9: class protoname_rtable {

10:

11: rtable_t 1rt_;

12:

13: public:

14:

15: protoname_rtable();

16: void print (Tracex*) ;

17: void clear();

18: void rm_entry(nsaddr_t) ;

19: void add_entry(nsaddr_t, nsaddr_t) ;
20: nsaddr_t lookup(nsaddr_t);

18

21: u_int32_t size();

22: };
23:
24: #endif

The implementation of these functions is quite easy. In fact the constructor
is so simple that there is nothing to do inside it.

protoname/protoname_rtable.cc

1: protoname_rtable::protoname_rtable() { }

The print() function will dump the contents of the node’s routing table to the
trace file. To do that we use the Trace class which we mentioned in section 4.3.

protoname/protoname_rtable.cc

1: void

2: protoname_rtable: :print(Trace* out) {

3: sprintf (out->pt_->buffer(), "P\tdest\tnext");
4: out->pt_->dump() ;

5: for (rtable_t::iterator it = rt_.begin(); it != rt_.end(); it++) {
6: sprintf (out->pt_->buffer(), "P\t%d\t)d",
7: (xit) .first,

8: (*it) .second) ;

9: out->pt_->dump () ;

10: }

11: %}

The following function removes all entries in routing table.

protoname/protoname_rtable.cc

void
protoname_rtable::clear() {
rt_.clear();

S wWwN -

}

To remove an entry given its destination address we implement the rm_entry()
function.

protoname/protoname_rtable.cc

void
protoname_rtable: :rm_entry(nsaddr_t dest) {
rt_.erase(dest);

DWW N

}

The code below is used to add a new entry in the routing table given its
destination and next hop addresses.

19

protoname/protoname_rtable.cc

void
protoname_rtable::add_entry(nsaddr_t dest, nsaddr_t next) {
rt_[dest] = next;

W N e

}

Lookup() returns the next hop address of an entry given its destination ad-
dress. If such an entry doesn’t exist, (that is, there is no route for that destina-
tion) the function returns IP-.BROADCAST. Of course we include common/ip.h
in order to use this constant.

protoname/protoname_rtable.cc

1: nsaddr_t

2: protoname_rtable::lookup(nsaddr_t dest) {
3 rtable_t::iterator it = rt_.find(dest);
4 if (it == rt_.end())

5: return IP_BROADCAST;

6 else

7: return (*it).second;

8: }

Finally, size() returns the number of entries in the routing table.

protoname/protoname_rtable.cc

1: u_int32_t

2: protoname_rtable::size() {
3: return rt_.size();

4: }

6 Needed Changes

We have almost finished. We have implemented a routing agent for protocol
protoname inside NS2. But there are some changes we need to do in order to
integrate our code inside simulator.

6.1 Packet type declaration

If we remember we had to use a constant to indicate our new packet type,
PT_PROTONAME. We will define it inside file common/packet.h.

Let’s find packet_t enumeration, where all packet types are listed. We will
add PT_.PROTONAME to this list as we show in the next piece of code (line
6).

common/packet.h

1: enum packet_t {
2: PT_TCP,

20

PT_UDP,

PT_CBR,

/* ... much more packet types ... */
PT_PROTONAME,

PT_NTYPE // This MUST be the LAST one

0 N O O W

};

Just below in same file there is definition of p_info class. Inside constructor
we will provide a textual name for our packet type (line 6).

common/packet.h

1: p_info() {

2: name_[PT_TCP]= "tcp";

3: name_[PT_UDP]= "udp";

4: name_[PT_CBR]= "cbr";

5: /* ... much more names ... */

6: name_[PT_PROTONAME]= "protoname";
7: }

6.2 Tracing support

As we know simulation’s aim is to get a trace file describing what happended
during execution. To feel familiar with traces please read chapter 23 [2]. A
Trace object is used to write wanted information of a packet everytime it is
received, sent or dropped. To log information regarding our packet type we
implement the format_protoname() function inside the CMUTrace class. Trace
support for wireless simulations is provided by CMUTrace objects and it is
described in chapter 16 [2].

Let’s edit trace/cmu-trace.h file. We must add our new function as in the
line number 6 of the next example.

trace/cmu-trace.h

1: class CMUTrace : public Trace {

2 /* ... definitions ... */

3: private:

4: /* ... %/

5 void format_aodv(Packet *p, int offset);

6 void format_protoname (Packet *p, int offset);
7: };

The next piece of code (extracted from trace/cmu-trace.cc) shows different
types of traces.

trace/cmu-trace.cc

#include <protoname/protoname_pkt.h>

1
2:
3: /x ... %/
4.

21

5: wvoid

6: CMUTrace::format_protoname(Packet *p, int offset)
7: o

8: struct hdr_protoname_pkt* ph = HDR_PROTONAME_PKT(p);
9:

10: if (pt_—>tagged()) {

11: sprintf (pt_->buffer() + offset,

12: "-protoname:o %d -protoname:s %d -protoname:1l %d ",
13: ph->pkt_src(),

14: ph->pkt_seq_num(),

15: ph->pkt_len());

16: }

17: else if (newtrace_) {

18: sprintf (pt_->buffer() + offset,

19: "-P protoname -Po %d -Ps %d -P1 %d ",
20: ph->pkt_src(),

21: ph->pkt_seq_num(),

22: ph->pkt_len());

23: }

24: else {

25: sprintf (pt_->buffer() + offset,

26: "[protoname %d %d %d] ",

27: ph->pkt_src(),

28: ph->pkt_seq_num(),

29: ph->pkt_len());

30: }

31: }

We can deduce from above code that there are three different trace formats:
tagged traces, new format traces and classical traces. The syntaxis followed
by each, although different, is very easy and intuitive as you can tell. Both
in tagged and new trace formats there exists tags used to identify each field
of information being printed. We have decided to use “0” as source address
(origin), “s” as sequence number and “l” as length of corresponding packet.

In order to call this recently created function we must change the format()

in trace/cmu-trace.cc.

trace/cmu-trace.cc

1: wvoid

2: CMUTrace::format(Packet* p, const char *why)
3: o

4: /% ... %/

5: case PT_PING:

6: break;

7:

8: case PT_PROTONAME:

9: format_protoname(p, offset);
10: break;

11:

22

12: default:
13: VA T Y
14: }

6.3 Tcl library

Now we need to do some changes in Tcl files. Actually we are going to add our
packet type, give default values for binded attributes and provide the needed
infraestructure to create wireless nodes running our protoname routing protocol.

In tel/lib/ns-packet.tcl you must locate the next code and add protoname to
the list (as we do in line 2).

tcl/lib/ns-packet.tcl

1: foreach prot {
2 Protoname
3 AODV
4: ARP
5: # ...
6: NV

70 3 A

8 add-packet-header $prot
9: }

Default values for binded attributes have to be given inside tcl/lib/ns-default.tcl.
We must go to the end of the file and write something like the next code:

tcl/lib/ns-default.tcl

1: # ...
2: # Defaults defined for Protoname
3: Agent/Protoname set accessible_var_ true

Finally we have to modify tcl/lib/ns-lib.tcl. We need to add procedures for
creating a node. Our interest will be centered around creating a wireless node
with protoname as routing protocol.

The procedure node calls to the create-wireless-node procedure. This last
one, among other tasks, is intended to set the routing agent for a node. We
need to hack this procedure to create an instance of our protoname protocol.

tcl/lib/ns-1lib.tcl

1: Simulator instproc create-wireless-node args {

2: # ...

3: switch -exact $routingAgent_ {

4: Protoname {

5: set ragent [$self create-protoname-agent $node]
6: }

7: # ...

8: }

9: # .

10: }

23

Then create-protoname-agent will be coded below as shown in the next ex-
ample.

tcl/1lib/ns-1lib.tcl

1: Simulator instproc create-protoname-agent { node } {
2 # Create Protoname routing agent
3: set ragent [new Agent/Protoname [$node node-addr]]
4: $self at 0.0 "$ragent start"
5: $node set ragent_ $ragent
6: return $ragent
7}

Line 3 creates a new protoname agent with the node’s address. This agent
is scheduled to start at the begining of the simulation (line 4), and is assigned
as the node’s routing agent in line 5.

6.4 Priority queue

It’s very likely you will use priority queues in your simulations. This queue type
treats routing packets as high priority packets, inserting them at the begining
of the queue. But we need to tell the PriQueue class that protoname packets
are routing packets and therefore treated as high priority.

We must modify the recv() function in queue/priqueuve.cc file. Line 13 in the
next piece of code is the only modification we need to do.

queue/priqueue.cc

1: void

2: PriQueue::recv(Packet *p, Handler xh)
3: {

4: struct hdr_cmn *ch = HDR_CMN(p);
5:

6: if (Prefer_Routing_ Protocols) {
7:

8: switch(ch->ptype()) {

9: case PT_DSR:

10: case PT_MESSAGE:

11: case PT_TORA:

12: case PT_AODV:

13: case PT_PROTONAME:

14: recvHighPriority(p, h);
15: break;

16:

17: default:

18: Queue: :recv(p, h);
19: }

20: }

21: else {

22: Queue: :recv(p, h);

23: }

24

24: }

6.5 Makefile

Now everyting is implemented and we only need to compile it! To do so we
will edit Makefile file by adding our object files inside OBJ_C'C variable as in
following code (line 4).

Makefile

1: OBJ_CC = \

2: tools/random.o tools/rng.o tools/ranvar.o common/misc.o common/timer-handler.o \
3 # ...

4: protoname/protoname.o protoname/protoname_rtable.o \

5 # ...

6 $(0BJ_STL)

As we modified common/packet.h but not common/packet.cc we should
“touch” this last file for being recompiled. After that we can execute make and
enjoy our own routing protocol (or perhaps solve all compilation problems!).

[ns-2.27]$ touch common/packet.cc
[ns-2.27]1$ make

7 Receiving Information from Layer-2 Protocols

Some routing protocols might be interested in reacting when a packet can’t be
sent from layer-2. This can be easily accomplished by our routing agent, as we
explain below.

How does it work? The common header of a packet has a field where you
can specify a function that will be called if the packet can’t be sent by the
layer-2 agent. Let’s call that function protoname_mac_failed_callback(). We will
use this function to call another one within the routing agent being in charge of
reacting to such a layer-2 failure. We will call this second function mac_failed().
So we only have to modify line 9 of protoname/protoname.h.

protoname/protoname.h

1: class Protoname : public Agent {

2 /* ... x/

3:

4: public:

5:

6: Protoname (nsaddr_t);

7: int command (int, const char*constx*);
8: void recv(Packet*, Handlerx);
9: void mac_failed(Packet*);

10: };

11: #endif

25

The protoname/protoname.cc file requires more changes. First of all we
must implement the function which is registered inside the common header.
That function will simply call to the mac_failed() function of the Protoname
class. You can see the implementation below.

protoname/protoname.cc
static void

protoname_mac_failed_callback(Packet *p, void *arg) {
((Protonamex*)arg)->mac_failed(p);

DWW N

3

The functionality implemented by mac_failed() depends very much on pro-
toname specification. As an example, the next piece of code prints a debug
message (lines 6-9) and drops the packet (line 11).

protoname/protoname.cc

1 void

2: Protoname::mac_failed(Packet* p) {

3 struct hdr_ip* ih = HDR_IP(p);
4 struct hdr_cmn* ch = HDR_CMN(p);
5:

6: debug("%f: Node %d MAC layer cannot send a packet to node %d\n",
7 CURRENT_TIME,

8 ra_addr(),

9: ch->next_hop());

10:

11: drop(p, DROP_RTR_MAC_CALLBACK) ;
12:

13: /* ... do something ... */

14: }

If we want to know when a routing packet isn’t sent by layer-2 protocols we
need to modify send_protoname_pkt(). Similarly if we want to pay this attention
to data packets forward_data() must be lightly modified as well. In both cases
we only must add next two lines when updating common header of the packet.

protoname/protoname.cc

1: ch->xmit_failure_ = protoname_mac_failed_callback;
2: ch->xmit_failure_data_ = (void*)this;

What cases will protoname_mac_failed_callback() be called in? In NS-2.27
we can found two different situations:

mac/arp.cc When a node wants to resolve a destination address (via ARP)
but maximum number of retries is exceeded.

mac/mac-802_11.cc There are two possibilities. First one occurs when a RT'S
is sent but no corresponding CTS is received and maximum number of re-
tries is exceeded. Second one happens when a data packet was transmitted
but never acknowledged (no ACK received) and maximum number of re-
tries is exceeded.

26

8 Support for Wired-Cum-Wireless Simulations

Until now we have been only concerned about flat manets, that is, wireless-only
scenarios. In this section we will introduce basic concepts to deal with hybrid
manets (wired-cum-wireless scenarios, following NS2 terminology). Wired-cum-
wireless scripts need to use hierarchical addressing, so you must read chapter
15 and 29 [2] to get necessary knowledge in this type of addressing,.

With minimal changes we could use our protocol in wired-cum-wireless sim-
ulations. In these ones there are fixed nodes, wireless nodes and base stations.
A base station is a gateway between wired and wireless domains, and every
wireless node needs to know which base station it is associated to. All we need
to do in order to provide wired-cum-wireless support is to set the corresponding
base station for each node.

Simulation scripts describing wired-cum-wireless scenarios perform former
operation on each mobile node, that is, every mobile node is attached to a base
station (base-station function of Node API). But imagine we are interested in
scenarios where several base stations are used, and we also want mobile nodes
to dynamically change their associated base stations. This is useful if we want
to code a routing protocol supporting hybrid ad hoc networks where multiple
base stations are allowed. If this is your case, continue reading the section.

Let’s edit protoname/protoname.h again as is shown in following code. Lines
1 and 11 are added, while the rest remains unchanged.

protoname/protoname.h
#include <mobilenode.h>
VA S

1
2
3
4:
5: class Protoname : public Agent {
6.
7
8
9

/*x ... %/
protected:
10:
11: MobileNode* node_;
12:
13: VAT
14: };

We have added a reference to a MobileNode object (defined in common/mobilenode.h),
which represents node at which the routing agent is attached to. To get this
reference we need to add next line 4 inside Protoname constructor.

protoname/protoname.cc

: Protoname: :Protoname(nsaddr_t id) : Agent(PT_PROTONAME), pkt_timer_(this) {
bind_bool("accessible_var_", &accessible_var_);

ra_addr_ = id;

node_ (MobileNode*)Node: :get_node_by_address(id);

O W N

27

MobileNode class owns two functions we are interested in. First of all
is base_stn(), which returns identifier of the base station the mobile node is
attached to. Second is set_base_stn() which is be able to establish suitable base
station for that mobile node. So we can deal with wired-cum-wireless simulations
by using these two functions. As an example, next code checks if the mobile
node itself is a base station; and if not then it is assigned one.

protoname/protoname.cc

1: if (node_->base_stn() == ra_addr()) {
2: // I’m a base station

3: /x ... %/

4: }

5: else {

6: // I’m not a base station

7: node_->set_base_stn(base_stn_addr);
8: %}

Former example shows how to change associated base station dynamically.
What approaches are used to perform these switches depend on the protocol
itself.

References

[1] Marc Greis. Tutorial ~ for the Network Simulator "ns”.
http://www.isi.edu/nsnam/ns/tutorial /index.html.

[2] The VINT Project. The ns Manual, December 2003.
http://www.isi.edu/nsnam/ns/ns-documentation.html.

28

A GNU Free Documentation License

Version 1.2, November 2002
Copyright (©)2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document ”free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of ” copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated
herein. The ”Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as ”you”. You accept the
license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

29

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A copy that is not
”Transparent” is called ” Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, "Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific sec-
tion name mentioned below, such as ” Acknowledgements”, ” Dedications”,
”Endorsements”, or ”History”.) To ”Preserve the Title” of such a sec-
tion when you modify the Document means that it remains a section ”Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

30

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if

31

there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to

the other copyright notices.

. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled ”History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
”History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

. For any section Entitled ” Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

32

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled ” Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in
the various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ” Acknowledgements”, and any sections Entitled
”Dedications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in

33

the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an ”aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ” Acknowledgements”, ”Dedica-
tions”, or ”History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

34

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

35

